Copyright

© BULLS Bikes USA

Distribution or reproduction of these operating instructions and utilization or communication of their content is prohibited unless expressly approved. Any infringement will render the offender liable for compensation. All rights reserved in the event that a patent, utility model or industrial design is registered.
Data sheet

Surname, first name of the purchaser: ________________________________

Date of purchase: ________________________________

Model: ________________________________

Frame number: ________________________________

Type number: ________________________________

Unloaded weight (lbs): ________________________________

Tire size: ________________________________

Recommended tire pressure (bar)*: front: ______ rear: ______

Wheel circumference (mm): ________________________________

Company stamp and signature: ________________________________

*After a tire change, refer to the tire markings for the permitted tire pressures and make sure that they are observed. The recommended tire pressure must not be exceeded.
Table of contents

1 About these instructions

1.1 Manufacturer
1.2 Laws, standards and directives
1.3 Other valid documents
1.4 Subject to change
1.5 Language
1.6 For your safety
1.6.1 Instruction, training and customer service
1.6.2 Basic safety notes
1.6.3 Warnings
1.6.4 Safety markings
1.7 For your information
1.7.1 Instructions for actions
1.7.2 Information on the type plate
1.7.3 Language conventions
1.8 Type plate
1.9 Identifying
1.9.1 Operating instructions
1.9.2 Bicycle

2 Safety

2.1 Requirements for the rider
2.2 Hazards for vulnerable groups
2.3 Personal protective equipment
2.4 Proper use
2.4.1 City and trekking bicycle
2.4.2 Mountain bike
2.5 Improper use
2.5.1 City and trekking bicycle
2.5.2 Mountain bike
2.6 Duty to take care
2.6.1 Rider
2.6.2 Operator

3 Description

3.1 Overview
3.2 Wheel and fork
5.3.7 Mounting the wheel in the FOX fork 72
5.3.7.1 Mounting the wheel with the quick release (15 mm) 72
5.3.7.2 Adjusting the FOX quick release 73
5.3.7.3 Mounting the wheel with Kabolt axles 75
5.3.7.4 Checking the stem and handlebars 76
5.3.8 Sale of the bicycle 77

6 Before the first ride 78
6.1 Adjusting the saddle 78
6.1.1 Adjusting the saddle tilt 78
6.1.2 Determining the seat height 79
6.1.3 Adjusting the seat height with quick release 80
6.1.4 Setting the height-adjustable seat post 81
6.1.4.1 Lowering the saddle 82
6.1.4.2 Raising the saddle 82
6.1.5 Adjusting the seat position 83
6.2 Adjusting the handlebars 84
6.2.1 Adjusting the height of the handlebars 85
6.2.2 Turning the handlebars to the side 86
6.2.2.1 Checking the clamping force of the quick releases 87
6.2.2.2 Adjusting the quick release clamping force 87
6.3 Adjusting the brake lever 87
6.3.1 Adjusting the pressure point on a Magura brake lever 87
6.3.2 Adjusting the grip distance 88
6.3.2.1 Adjusting the grip distance on a Magura brake lever 89
6.4 Adjusting the suspension of the Suntour fork 90
6.4.1 Adjusting the negative deflection 91
6.4.1.1 Adjusting the air suspension fork negative deflection 91
6.4.1.2 Adjusting the steel suspension fork negative deflection 93
6.4.2 Adjusting the rebound 94
6.5 Adjusting the suspension of the FOX fork 95
6.5.1 Adjusting the negative deflection 95
6.5.2 Adjusting the rebound 98
6.6 Adjusting the Suntour rear frame damper 99
6.6.1 Adjusting the negative deflection 99
6.6.2 Adjusting the rebound 100
6.6.3 Setting the compression 101
6.7 Adjusting the FOX rear frame damper 102
6.7.1 Adjusting the negative deflection 102
Table of contents

6.7.2 Adjusting the rebound 104
6.8 Retracting brake linings 105

7 Operation 106
7.1 Before each ride 108
7.2 Check list before each ride 109
7.3 Using the kickstand 110
7.4 Using the pannier rack 111
7.5 Rechargeable battery 113
7.5.1 Down tube/seat tube battery 115
7.5.1.1 Removing the down tube/seat tube battery 115
7.5.1.2 Inserting the down tube/seat tube battery 116
7.5.2 Integrated battery 117
7.5.2.1 Removing the integrated battery 117
7.5.2.2 Inserting the integrated battery 118
7.5.3 Charging the battery 119
7.5.4 Charging the dual battery 121
7.5.4.1 Charging process when two batteries are used 122
7.5.4.2 Charging process when one battery is used 122
7.5.5 Waking the battery 123
7.6 Electric drive system 124
7.6.1 Switching on the drive system 124
7.6.2 Switching off the drive system 125
7.7 Display 126
7.7.1 Charging the display battery 127
7.7.1.1 Charging the display battery on bicycle 127
7.7.1.2 Charging the display battery via the USB port 127
7.7.2 Storage mode 128
7.7.2.1 Activating the storage mode 128
7.7.2.2 Deactivating the storage mode 128
7.7.3 Removing and attaching the display 128
7.7.3.1 Removing the display 129
7.7.3.2 Inserting the display 129
7.7.3.3 Securing the display 130
7.7.4 Using the USB port 130
7.7.5 Switching on the display 131
7.7.6 Switching off the display 131
7.7.7 Using the push assist system 132
7.7.8 Using the driving light 133
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7.9 Selecting the level of assistance</td>
<td>133</td>
</tr>
<tr>
<td>7.7.10 Operating the display</td>
<td>133</td>
</tr>
<tr>
<td>7.7.11 Opening the start screen</td>
<td>135</td>
</tr>
<tr>
<td>7.7.12 Opening the status screen</td>
<td>135</td>
</tr>
<tr>
<td>7.7.13 Opening the settings</td>
<td>135</td>
</tr>
<tr>
<td>7.7.14 Changing the settings</td>
<td>135</td>
</tr>
<tr>
<td>7.7.15 Opening the Quick Menu</td>
<td>136</td>
</tr>
<tr>
<td>7.7.15.1 Resetting the journey data</td>
<td>136</td>
</tr>
<tr>
<td>7.7.15.2 Adjusting the pedalling frequency or start gear</td>
<td>136</td>
</tr>
<tr>
<td>7.8 Gear shift</td>
<td>137</td>
</tr>
<tr>
<td>7.8.1 Using the derailleur gears</td>
<td>137</td>
</tr>
<tr>
<td>7.9 Brake</td>
<td>138</td>
</tr>
<tr>
<td>7.9.1 Using the brake lever</td>
<td>142</td>
</tr>
<tr>
<td>7.10 Suspension and damping</td>
<td>143</td>
</tr>
<tr>
<td>7.10.1 Adjusting the compression of the Suntour fork</td>
<td>143</td>
</tr>
<tr>
<td>7.10.2 Adjusting the compression of the Fox fork</td>
<td>144</td>
</tr>
<tr>
<td>7.10.3 Adjusting the compression of the Suntour damper</td>
<td>145</td>
</tr>
<tr>
<td>7.10.4 Adjusting the compression of the Fox damper</td>
<td>146</td>
</tr>
<tr>
<td>8 Maintenance</td>
<td>148</td>
</tr>
<tr>
<td>8.1 Cleaning and servicing</td>
<td>150</td>
</tr>
<tr>
<td>8.1.1 After each ride</td>
<td>150</td>
</tr>
<tr>
<td>8.1.1.1 Cleaning the suspension fork</td>
<td>150</td>
</tr>
<tr>
<td>8.1.1.2 Cleaning the rear frame damper</td>
<td>150</td>
</tr>
<tr>
<td>8.1.1.3 Cleaning the pedals</td>
<td>150</td>
</tr>
<tr>
<td>8.1.2 Basic cleaning</td>
<td>151</td>
</tr>
<tr>
<td>8.1.2.1 Cleaning the frame</td>
<td>152</td>
</tr>
<tr>
<td>8.1.2.2 Cleaning the stem</td>
<td>152</td>
</tr>
<tr>
<td>8.1.2.3 Cleaning the rear frame damper</td>
<td>152</td>
</tr>
<tr>
<td>8.1.2.4 Cleaning the wheel</td>
<td>152</td>
</tr>
<tr>
<td>8.1.2.5 Cleaning the drive elements</td>
<td>153</td>
</tr>
<tr>
<td>8.1.2.6 Cleaning the chain</td>
<td>153</td>
</tr>
<tr>
<td>8.1.2.7 Cleaning the battery</td>
<td>154</td>
</tr>
<tr>
<td>8.1.2.8 Cleaning the drive unit</td>
<td>154</td>
</tr>
<tr>
<td>8.1.2.9 Cleaning the display</td>
<td>155</td>
</tr>
<tr>
<td>8.1.2.10 Cleaning the brake</td>
<td>155</td>
</tr>
<tr>
<td>8.1.3 Servicing</td>
<td>156</td>
</tr>
<tr>
<td>8.1.3.1 Servicing the frame</td>
<td>156</td>
</tr>
<tr>
<td>8.1.3.2 Servicing the stem</td>
<td>156</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>8.1.3.3</td>
<td>Servicing the fork</td>
</tr>
<tr>
<td>8.1.3.4</td>
<td>Servicing the drive elements</td>
</tr>
<tr>
<td>8.1.3.5</td>
<td>Servicing the pedal</td>
</tr>
<tr>
<td>8.1.3.6</td>
<td>Servicing the chain</td>
</tr>
<tr>
<td>8.1.3.7</td>
<td>Servicing the drive elements</td>
</tr>
<tr>
<td>8.2</td>
<td>Maintenance</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Wheel</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Brake system</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Electrical cables and brake cables</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Gear shift</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Stem</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Checking the chain and belt tension</td>
</tr>
<tr>
<td>8.2.7</td>
<td>USB port</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Suspension fork</td>
</tr>
<tr>
<td>8.3</td>
<td>Service</td>
</tr>
<tr>
<td>8.4</td>
<td>Adjusting and repairing</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Use original parts and lubricants only</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Wheel quick release</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>Clamping the clamping lever</td>
</tr>
<tr>
<td>8.4.2.2</td>
<td>Clamping version I</td>
</tr>
<tr>
<td>8.4.2.3</td>
<td>Clamping version II</td>
</tr>
<tr>
<td>8.4.2.4</td>
<td>Clamping version III</td>
</tr>
<tr>
<td>8.4.2.5</td>
<td>Clamping version IV</td>
</tr>
<tr>
<td>8.4.2.6</td>
<td>Clamping version V</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Adjusting the tire pressure</td>
</tr>
<tr>
<td>8.4.3.1</td>
<td>Dunlop valve</td>
</tr>
<tr>
<td>8.4.3.2</td>
<td>Presta valve</td>
</tr>
<tr>
<td>8.4.3.3</td>
<td>Schrader valve</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Adjusting the gear shift</td>
</tr>
<tr>
<td>8.4.4.1</td>
<td>Cable-operated gear shift, single-cable</td>
</tr>
<tr>
<td>8.4.4.2</td>
<td>Cable-operated gear shift, dual-cable</td>
</tr>
<tr>
<td>8.4.4.3</td>
<td>Cable-operated twist grip, dual-cable</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Offsetting the brake lining wear</td>
</tr>
<tr>
<td>8.4.5.1</td>
<td>Hydraulically operated rim brake</td>
</tr>
<tr>
<td>8.4.5.2</td>
<td>Hydraulically operated disc brake</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Replacing the lighting</td>
</tr>
<tr>
<td>8.4.7</td>
<td>Setting the headlight</td>
</tr>
<tr>
<td>8.4.8</td>
<td>Repair by the specialist dealer</td>
</tr>
<tr>
<td>8.4.9</td>
<td>Replacing the lighting</td>
</tr>
</tbody>
</table>
Table of contents

8.4.10 Setting the headlight 181
8.4.11 Repair by the specialist dealer 181
8.4.12 First aid 182
8.4.13 The electric drive system or display do not start up 183
8.4.13.1 System messages 184
8.4.13.2 Special system messages 184
8.5 Accessories 186
8.5.1 Child seat 186
8.5.2 Bicycle trailer 188
8.5.3 Pannier rack 189

9 Recycling and disposal 190

10 Appendix 192
10.1 System messages 192
10.2 EC declaration of conformity 197
10.3 BOSCH EC Declaration of Conformity 198
10.4 Parts list 199
10.5 Table of figures 207
10.6 Index 211
1 About these instructions

Read these operating instructions before commissioning the bicycle to ensure you use all the functions correctly and safely. The operating instructions are not a substitute for personal instruction by the supplying specialist dealer. The operating instructions are a component part of the bicycle. Therefore, if it is re-sold at a later time, they must be handed over to the subsequent owner.

These operating instructions are mainly intended for the rider and operator of the bicycle, who tend to be non-professionals.

Text passages which are expressly intended for specialist staff (e.g. bicycle mechanics) are clearly marked with a tool symbol.

Staff at all specialist dealers have specialist training and qualifications, and are therefore capable of identifying risks and preventing hazards which may arise during maintenance, servicing and repairs on the bicycle. Information for specialist staff does not require non-professionals to take any action.

1.1 Manufacturer

The manufacturer of the bicycle is:

BULLS Bikes USA
11854 Alameda St
Lynwood, CA 90262
United States

Tel.: (310) 763-0677
Fax: contact@bullsbikesusa.com
Web: www.bullsbikesusa.com
About these instructions

1.2 Laws, standards and directives

These operating instructions comply with the essential requirement from:

- ISO 4210, Cycles – Safety requirements for bicycles

1.3 Other valid documents

These operating instructions are only complete in conjunction with the other valid documents.

The following document applies for this product:

- Charger operating instructions.

No other information is also applicable.

The constantly updated lists of approved accessories and parts are available to specialist dealers.
About these instructions

1.4 Subject to change

The information contained in these operating instructions are the approved technical specifications at the time of printing. Any significant changes are included in a new issue of the operating instructions.

1.5 Language

The original operating instructions are written in English. A translation is not valid without the original operating instructions.
About these instructions

1.6 For your safety

The safety concept of the bicycle comprises four elements:

- rider and/or operator instruction, and bicycle maintenance and repair by the specialist dealer,
- the chapter on general safety,
- the warnings in these instructions and
- the safety marking on the type plates.

1.6.1 Instruction, training and customer service

The supplying specialist dealer will provide customer service. Contact details can be found on the back page of these operating instructions and in the data sheet. If you are unable to contact your specialist dealer, you will find other specialist dealers at www.bullsbikesusa.com.

The specialist dealer authorised to perform repairs and maintenance work receives regular training.

The rider or the operator of the bicycle will be instructed in person on the bicycle functions when the supplying specialist dealer hands over the bicycle, if not before. This instruction particularly covers the bicycle's electrical functions and correct use of the charger.

Each rider to whom this bicycle is provided must receive instruction on the bicycle's functions. The operating instructions must be submitted to each rider in printed form and must be acknowledged and adhered to.
1.6.2 Basic safety notes

These operating instructions have a chapter with general safety notes [Chapter 2, page 20]. You can distinguish this chapter as it has a grey background.

1.6.3 Warnings

Hazardous situations and actions are marked with warnings. The warnings in these operating instructions are shown as follows:

<table>
<thead>
<tr>
<th>SIGNAL WORD</th>
<th>Description of the danger and the consequences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Will lead to serious or even fatal injuries if ignored. High-risk hazard.</td>
</tr>
<tr>
<td>WARNING</td>
<td>May lead to serious or even fatal injuries if ignored. Medium-risk hazard.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>May lead to minor or moderate injuries. Low-risk hazard.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>May lead to material damage if ignored.</td>
</tr>
</tbody>
</table>

Table 1: Meanings of the signal words
About these instructions

1.6.4 Safety markings

The following safety markings are used on the bicycle's type plates:

⚠ General warning

裆 Adhere to the instructions for use

Table 2: Meaning of safety markings

1.7 For your information

1.7.1 Instructions for actions

Instructions for actions are structured in accordance with the following pattern:

✓ Requirements (optional)

► Instruction for action

❖ Result of the action (optional)

1.7.2 Information on the type plate

Alongside the warnings, the type plates of the products also contain other important information on the bicycle:
About these instructions

1	Suitable for tarmacked and paved roads – no off-road riding or jumps
2	Suitable for tarmacked roads, cycle paths and firm gravel paths and roads, longer sections with moderate slopes and jumps up to 15 cm.
3	Suitable for tarmacked roads, cycle paths and easy to demanding off-road riding, sections with moderate slopes and jumps up to 61 cm.
4	Suitable for tarmacked roads, cycle paths and easy to demanding off-road riding, limited downhill use up to 25 km and jumps up to 122 cm.
5	Suitable for tarmacked roads, cycle paths and easy to extremely difficult off-road riding, unlimited downhill use and any jumps

Table 3: Relevance of area of use

| City and trekking bicycle |
| Child's bicycle / bicycle for young adults |
| Mountain bike |
| Racing bicycle |
| Carrier bicycle |
| Folding bicycle |

Table 4: Relevance of bicycle type
About these instructions

Read the instructions

Separate collection of electrical and electronic devices

Separate collection of ordinary and rechargeable batteries

Must not be thrown into fire (burning prohibited)

It is forbidden to open any type of battery

Device of protection class II

Only suitable for use indoors

Fuse (device fuse)

EU conformity

Recyclable material

Protect from temperatures above 122 °F and direct sunlight

Table 5: Relevance of safety instructions
1.7.3 **Language conventions**

The bicycle described in these operating instructions may be equipped with alternative components. The equipment of the bicycle is defined by the respective type number. Where applicable, the word *Alternative* beneath the heading indicates alternatively used components. The following terms are used for better legibility:

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating</td>
<td>Instructions Original operating instructions or translation of the original operating instructions</td>
</tr>
<tr>
<td>Bicycle</td>
<td>Electric motor driven cycle</td>
</tr>
<tr>
<td>Motor</td>
<td>Drive motor</td>
</tr>
</tbody>
</table>

The following conventions are used in these operating instructions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italics</td>
<td>Entry in the index</td>
</tr>
<tr>
<td>SPACED</td>
<td>Displays on the display screen</td>
</tr>
<tr>
<td>[Example, page numbering]</td>
<td>Cross references</td>
</tr>
<tr>
<td>•</td>
<td>Bulleted lists</td>
</tr>
</tbody>
</table>
1.8 Type plate

The type plate is situated on the frame. The type plate features the following information:

![Type plate, example]

Type plate, example

1 Identification
2 Classification
3 Maximum power output
4 Shut-off speed

Classification

(1) A “class 1 electric bicycle,” or “low-speed pedal-assisted electric bicycle,” is a bicycle equipped with a motor that provides assistance only when the rider is pedaling, and that ceases to provide assistance when the bicycle reaches the speed of 20 miles per hour.

(2) A “class 2 electric bicycle,” or “low-speed throttle-assisted electric bicycle,” is a bicycle equipped with a motor that may be used exclusively to propel the bicycle, and that is not capable of providing assistance when the bicycle reaches the speed of 20 miles per hour.

(3) A “class 3 electric bicycle,” or “speed pedal-assisted electric bicycle,” is a bicycle equipped with a motor that provides assistance only when the rider is pedaling, and that ceases to provide assistance when the bicycle reaches the speed of 28 miles per hour.
1.9 Identifying

1.9.1 Operating instructions

The identification number of these operating instructions is made up of the document number, the version number and the release date. It can be found on the cover page and in the footer.

| Identification number | 03412104_1.0_17.10.2018 |

Table 6: Identification number of the operating instructions

1.9.2 Bicycle

The operating instructions are a component part of the following bicycles:

<table>
<thead>
<tr>
<th>Type number</th>
<th>Model</th>
<th>Bicycle type</th>
</tr>
</thead>
<tbody>
<tr>
<td>790-771XX</td>
<td>Six50 EVO AM 4</td>
<td>Class 1</td>
</tr>
</tbody>
</table>
2 Safety

2.1 Requirements for the rider

If there are no legal requirements for riders of electrically power-assisted cycles, we recommend that the rider should be a minimum 14 years of age and have experience with muscle-powered bicycles.

The physical and mental abilities of the rider must be sufficient for riding on public roads.

2.2 Hazards for vulnerable groups

The battery and charger must be kept out of the reach of children.

If the bicycle is used by minors, comprehensive instruction should be provided by or in the presence of the legal guardians. Supervised use should also be scheduled until it is certain that the bicycle is being used as per these operating instructions. Legal guardians hold sole responsibility for determining whether minors are capable of using the bicycle.

2.3 Personal protective equipment

We recommend that you wear a suitable safety helmet. We also recommend that you wear typical, long, close-fitting cycling clothing and sturdy footwear.
2.4 Proper use

The bicycle is designed to support a maximum speed of 20 mph (class-1) or 28 mph (class-3). The bicycle may only be used in a perfect, fully functional condition.

National requirements may apply to the bicycle which differ from the standard equipment. For riding on public roads, some special regulations apply in relation to the driving light, reflectors and other components.

The general laws and the regulations for the prevention of accidents and environmental protection in the respective country of use must be adhered to. All check lists and instructions for actions in these operating instructions must be met. Approved accessories can be installed by specialist staff.

Each bicycle is assigned a bicycle type, which determines its proper use and area of use.

2.4.1 City and trekking bicycle

City and trekking bicycles are designed for daily, comfortable use. They are suitable for riding on public roads.

Area of use:

Suitable for tarmacked and paved roads.

Suitable for tarmacked roads, cycle paths and firm gravel paths and roads, and longer sections with moderate slopes and jumps up to 15 cm.
Safety

2.4.2 Mountain bike

The mountain bike is designed for sporting use. The design characteristics include a short wheelbase, a sitting position with the rider inclined towards the front, and a brake requiring low actuation force.

A mountain bike is a piece of sporting equipment. It requires an adaptation period as well as physical fitness. Use requires the appropriate training; in particular riding in bends and braking should be practised.

The strain on the rider, in particular the hands and wrists, arms, shoulders, neck and back, is accordingly high. Inexperienced riders tend to brake excessively and lose control as a result.

Area of use:

Suitable for tarmacked roads, cycle paths and easy to demanding off-road riding, sections with moderate slopes and jumps up to 61 cm.

Suitable for tarmacked roads, cycle paths and easy to demanding off-road riding, limited downhill use and jumps up to 122 cm.

Suitable for tarmacked roads, cycle paths and easy to extremely difficult off-road riding, unlimited downhill use and any jumps.
2.5 **Improper use**

Failure to adhere to the proper use poses a risk of personal injury and material damage. The bicycle is not suitable for the following uses:

- when the electrical drive system has been manipulated
- when the permitted gross load weight is exceeded
- riding with a damaged or incomplete bicycle
- riding over steps
- riding through deep water
- lending the bicycle to untrained riders
- carrying other people
- riding with excessive luggage
- riding with no hands
- riding on ice and snow
- improper servicing
- improper repair
- tough areas of use, such as professional competitions
- stunt riding or acrobatics.

2.5.1 **City and trekking bicycle**

City and trekking bicycles are not sports bicycles. If used for sports, the rider can expect reduced riding stability and diminished comfort.

Non-permitted areas of use:

1. Never drive off-road or perform jumps.

2. Never drive off-road or perform jumps over 15 cm.
2.5.2 Mountain bike

A mountain bike must be retrofitted with lighting, a guard etc. according to the applicable national laws and regulations before it can be used in public street traffic.

Non-permitted areas of use:

Never ride downhill or perform jumps over 61 cm.

Never traverse extremely difficult off-road terrain or perform jumps over 122 cm.

Never exceed your personal limits.

2.6 Duty to take care

The safety of the bicycle can only be assured if all the necessary measures are taken.

2.6.1 Rider

The rider:

- receives instruction before the first ride. They can clarify any questions relating to the operating instructions with the operator or specialist dealer
- wears personal protective equipment.
- assumes all the obligations of the operator in case the bicycle changes hands.
Safety

2.6.2 Operator

The operator has the duty of care and responsibility for scheduling these measures and checking that they are implemented.

The operator:

- makes these operating instructions available to the rider for the duration of use of the bicycle. If necessary, they translate the operating instructions into a language which the rider understands.
- familiarises the rider with the functions of the bicycle before the first ride. Only riders who have received instruction may be allowed to ride.
- instructs the rider on proper use and the wearing of personal protective equipment.
- only employs specialist staff for maintenance and repair of the bicycle.
Description

3 Description

3.1 Overview

Figure 2: Bicycle viewed from the right, Six50 Evo 4 used as example

1 Front wheel
2 Fork
3 Front mudguard
4 Headlight
5 Handlebars
6 Stem
7 Frame
8 Seat post
9 Saddle
10 Pannier rack
11 Reflector and rear light
12 Rear mudguard
13 Rear wheel
14 Kickstand
15 Chain
16 Chain guard
17 Frame number and type plate
3.2 Wheel and fork

Figure 3: Components of the wheel – example showing front wheel

1. Tire
2. Rim
3. Suspension fork head with setting wheel
4. Fork
5. Spoke
6. Quick release
7. Hub
8. Valve
9. Fork end of the suspension fork

3.2.1 Valve

Each wheel has a valve. It is used to fill the tire with air. There is a valve cap on each valve. The screw-on valve cap keeps out dust and dirt.

The bicycle either has a classical Dunlop valve, a Presta valve or a Schrader valve.
Description

Dunlop valve

The rider can easily exchange the valve and quickly release the air. The air pressure cannot be measured with this valve.

Presta valve

The presta valve requires a smaller hole in the rim, which is why it is especially suitable for the narrow rims of racing bicycles. The air pressure can be measured with this valve.

Schrader valve

The rider can fill the Schrader valve very easily at a petrol station. The air pressure can be measured with this valve.
3.2.2 Suspension

Both forks and suspension forks are fitted in this model series. A suspension fork is based either on a steel spring or air suspension. Unlike a rigid fork, a suspension fork has two functions which improve floor contact and comfort: suspension and damping.

The suspension prevents an impact, such as one caused by a stone lying in the bike's path, from being channelled directly into the rider's body via the fork. The impact is absorbed by the suspension system instead. This causes the suspension fork to compress. The compression can be disabled so that a suspension fork reacts like a rigid fork. The switch to disable the fork is called a remote lockout.

After compressing, the suspension fork returns to its original position. If there is a damper, it decelerates movement, preventing the suspension system from springing back in an uncontrolled manner and stopping the fork from vibrating up and down.
Dampers which dampen compressive deflection movements, i.e. a compression load, are called compression dampers or compression dashpots.

Dampers which dampen rebound deflection movements, i.e. a rebound load, are called rebound dampers or dashpots.

3.2.3 Suspension fork structure

Figure 5: Example showing Suntour fork
The stem and handlebars are fastened to the fork shaft (1). The wheel is fastened to the quick release axle (6). Other elements: The compression setting (2), crown (3), Q-Loc (5), dust seal (6), fork end for quick release (7), stanchion (8) and spring (9)
3.2.3.1 Air suspension fork structure

The fork of the bicycle features both air suspension and a compression damper, in addition to a rebound damper in some cases.

Figure 6: Example showing Yari fork
Diagram with the control panels: Air valve (1), valve cap (2) fork lock (3), quick release (4) and rebound damper adjuster (5) and the assembly groups: Air suspension fork (A), compression damper assembly group (B) and rebound damper assembly group (C)
3.2.3.2 Structure of the FOX rear frame damper

The rear frame damper features air suspension, a compression damper and a rebound damper.

Figure 7: Example showing FOX rear frame damper

1 Total damper deflection
2 Rubber air chamber seal
3 Negative distance
4 O-ring
3.2.3.3 Structure of the Suntour rear frame damper

The rear frame damper features air suspension, a compression damper and a rebound damper.

Figure 8: Example showing Suntour rear frame damper

1 Upper eye
2.1 Total damper length
2.2 SAG
3 Lower eye
4 O-ring
5 Sleeve
6 Damper unit
7 IFP (internal floating piston)
8 Air valve
9 Air chamber
10 Lockout lever
11 Rebound lever
3.3 Brake system

The bicycle is equipped with a disc brake.

![Diagram of bicycle brake system]

Figure 9: Rim brake components with details; Magura HS22 used as an example

1. Rear wheel rim brake
2. Brake booster
3. Brake lining
4. Handlebars with brake levers
5. Front wheel rim brake

The rim brake stops the wheel moving when the rider pulls the brake lever, causing two brake linings, positioned opposite one another, to be pressed onto the rims.
The hydraulic rim brake features a locking lever

Figure 10: Rim brake locking lever, closed (1) and open (2)

The rim brake locking lever is not marked with any lettering. Only a specialist dealer may set the rim brake locking lever.
3.4 Electric drive system

The bicycle is driven by muscle power via the chain drive. The force which is applied by pedalling in the direction of travel, drives the front chain wheel. The chain transmits the force onto the rear chain wheel and then onto the rear wheel.

Figure 11: Diagram of mechanical drive system

1. Direction of travel
2. Chain
3. Rear chain wheel
4. Front chain wheel
5. Pedal

In addition, the bicycle has an integrated, electric drive system, with a control panel with display.
The electric drive system is made up of 7 components:

Figure 12: Diagram of electric drive system

1. **Headlight**
2. **Display**
3. **Control panel**
4. **Down tube battery**
5. **Rear light**
6. **Motor**
 - A charger which is designed for the battery.

As soon as the required muscle power from the rider pedalling passes a certain level, the motor is activated gently and assists the pedalling motion of the rider. The motor force is determined by the set level of assistance.

The bicycle does not have a separate emergency stop or emergency shut-off button. You can stop the drive system with removable display in the event of an emergency by removing the display.

The motor switches off automatically as soon as the rider no longer pedals, the temperature is outside the permitted range, there is an overload or the shut-off speed of 20 mph (class-1) or 28 mph (class-3), has been reached.
3.4.1 Rechargeable battery

The lithium ion battery has an internal electronic protection circuit. It is matched to the charger and the bicycle. The battery temperature is monitored at all times. The battery is protected against deep discharge, overcharging, overheating and short circuit. In the event of a hazard, a protective circuit switches the battery off automatically. If the electric drive system is not used for about 10 minutes (e.g. the bicycle is stationary) and no button has been pressed on the display or the control panel, the electric drive system and the battery are automatically switched off to save energy.

The battery's service life can be extended if it is well maintained and, above all, stored at the correct temperatures. The battery charge status will decrease with age, even if the battery is maintained properly. If the operating time is severely shortened after charging, this is a sign that battery has reached the end of its useful life.

<table>
<thead>
<tr>
<th>Transportation temperature</th>
<th>41°F–77 °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal transportation temperature</td>
<td>50°F–59 °F</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>41°F–77 °F</td>
</tr>
<tr>
<td>Ideal storage temperature</td>
<td>50°F–59 °F</td>
</tr>
<tr>
<td>Charging ambient temperature</td>
<td>50°F–86 °F</td>
</tr>
</tbody>
</table>

Table 7: Rechargeable battery technical data
The bicycle has an integrated battery.

Figure 13: Details of integrated battery

1. Key to the battery lock
2. Retainer guard
3. Securing hook
4. On-Off button (battery)
5. Operating and charge status indicator
6. Integrated battery housing

3.4.1.1 Operating and charge status indicator

The five green LEDs on the operating and charge status indicator indicate the charge status when the battery is switched on. Each LED represents 20% of the charge status. The charge status of the switched-on battery is also shown on the display. If the battery charge status falls below 5%, all the LEDs on the operating and charge status indicator will go out. However, the charge status is still shown on the display.

3.4.2 Driving light

When the driving light is activated, the headlight and the rear light are switched on together.
3.4.3 Control panel

The control panel has six buttons.

Figure 14: Overview of the control panel

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select button</td>
</tr>
<tr>
<td>2</td>
<td>Browse backwards button</td>
</tr>
<tr>
<td>3</td>
<td>Browse forwards button</td>
</tr>
<tr>
<td>4</td>
<td>Plus button</td>
</tr>
<tr>
<td>5</td>
<td>Push assist button</td>
</tr>
<tr>
<td>6</td>
<td>Minus button</td>
</tr>
</tbody>
</table>

Table 8: Overview of the control panel

3.4.4 Display

The display has two buttons to display the main drive system functions and the journey data. The rider can switch off the drive system by removing the display.

The bicycle's battery supplies the display with energy when the display is inserted in the mount, a sufficiently charged battery is inserted into the bicycle, and the drive system is switched on.
Description

If the on-board computer is removed from its mount, power is supplied from the display battery. If the display battery is low, a warning message is shown on the screen.

If the on-board computer is removed from its mount and not switched off, information on the last trip distance travelled and status information will be displayed after one another in a loop.

If no button is pressed after its removal from its mount, the display will switch off after 1 minute.

The date and time will be maintained for a maximum of six months without charging the display battery. When it is switched on again, the date and time will be reset if there is a Bluetooth connection to the app and successful GPS localisation on the smartphone.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal lithium ion battery</td>
<td>3.7 V, 240 mAh</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>41°F–77 °F</td>
</tr>
<tr>
<td>Charging ambient temperature</td>
<td>50°F–86 °F</td>
</tr>
</tbody>
</table>

Table 9: Display battery technical data
3.4.4.1 USB port

There is a USB port underneath the rubber cover below the display.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driving light button</td>
</tr>
<tr>
<td>2</td>
<td>Screen display</td>
</tr>
<tr>
<td>3</td>
<td>On-Off button (display)</td>
</tr>
<tr>
<td>4</td>
<td>USB port protective flap</td>
</tr>
</tbody>
</table>

Table 10: Operating element overview

<table>
<thead>
<tr>
<th>Charge voltage</th>
<th>5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charging current</td>
<td>max. 500 mA</td>
</tr>
</tbody>
</table>

Table 11: USB port technical data

The USB connection can be used to operate or charge most devices which can be recharged via USB, such as different mobile telephones. The display and a sufficiently charged battery must be in use on the bicycle to charge devices.
3.4.4.2 Indicators

Start screen

The START SCREEN will appear as soon as the display is inserted into the mount. The START SCREEN has ten on-screen indicators:

![Overview of start screen](image)

Figure 16: Overview of start screen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) km/h</td>
<td>Speed unit indicator</td>
</tr>
<tr>
<td>(2)</td>
<td>Driving light symbol</td>
</tr>
<tr>
<td>(3) 82%</td>
<td>Battery charge status indicator</td>
</tr>
<tr>
<td>(4) 00:00</td>
<td>Clock indicator</td>
</tr>
<tr>
<td>(5)</td>
<td>Selected level for assistance indicator</td>
</tr>
<tr>
<td>(6)</td>
<td>Power evaluation</td>
</tr>
<tr>
<td>(7)</td>
<td>Own power indicator</td>
</tr>
<tr>
<td>(8)</td>
<td>Motor power indicator</td>
</tr>
<tr>
<td>(9)</td>
<td>Guidance bar</td>
</tr>
<tr>
<td>(10)</td>
<td>Speed indicator</td>
</tr>
</tbody>
</table>

Table 12: Overview of on-screen indicators
Description

Status bar

The indicators for the speed unit (1), battery charging (3), clock (4) and the driving light symbol (2) are featured in the *status bar* and are shown on every screen.

Status screen

You can use the *browse backwards button* on the START SCREEN to access the STATUS SCREEN.

The STATUS SCREEN shows the current time and the charge status for all batteries on your bicycle next to the status bar.

Below, there are icons to display an activated Bluetooth® function or a device connected via Bluetooth, such as a heart rate monitor.

You can access SETTINGS in the lower section.

Quick menu

You can use the QUICK MENU to display selected settings which can also be adjusted while you are riding.

You can use the *select button* on the control panel to access the QUICK MENU. You cannot access it from the STATUS SCREEN.
You can make the following settings on the Quick Menu.

<table>
<thead>
<tr>
<th>Explanation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET [DD.MM.YY]</td>
<td>All journey data are reset to zero for the trip distance up until this point.</td>
</tr>
<tr>
<td>ESHIFT</td>
<td>Adjust items such as pedalling frequency or start gear. The start gear can be adjusted under <My eBike> – <eShift> in Settings.</td>
</tr>
</tbody>
</table>

(3) Battery charge status indicator

If the display is removed from its mount, the last battery charge status message is saved.

The battery charge status indicator can be read on the status screen and in the status bar. You can also see the battery charge status on the LEDs on the battery itself.

<table>
<thead>
<tr>
<th>Colour of indicator</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>The battery charge level is over 20%.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The battery charge level is over 5%.</td>
</tr>
<tr>
<td>Red</td>
<td>The battery capacity for drive assistance has been used up and assistance is switched off. The remaining capacity is reserved for the bicycle lighting and the display. The battery capacity is sufficient for about 2 hours more bicycle lighting. Other electrical loads, such as eShift gear shift or recharging external devices via the USB port, are not taken into account here and may decrease battery duration.</td>
</tr>
</tbody>
</table>

A corresponding message is displayed if the battery is being recharged on the bicycle.

(5) Level of assistance

The higher the level for assistance, the more the drive system assists the rider when pedalling. eMTB mode is available for Performance Line CX drives. In eMTB mode, the assistance factor and the torque are dynamically adjusted depending on the pedalling force applied to the pedals. If the bicycle has been configured with eMTB mode, eMTB mode appears
Description

briefly when the SPORT level of assistance is selected.

<table>
<thead>
<tr>
<th>Level of assistance</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>When the drive system is switched on, the motor assistance is switched off. The bicycle can be used like a normal bicycle by simply pedalling. The push assist system cannot be activated.</td>
</tr>
<tr>
<td>ECO</td>
<td>Limited assistance with maximum efficiency for maximum range</td>
</tr>
<tr>
<td>TOUR</td>
<td>Constant assistance, for long-range tours</td>
</tr>
<tr>
<td>EMTB</td>
<td>Optimum assistance on any terrain, sporty start-up, improved dynamics and maximum performance.</td>
</tr>
<tr>
<td>TURBO</td>
<td>Maximum assistance up to high pedalling frequencies, for sport riding</td>
</tr>
</tbody>
</table>

Table 13: Overview of levels of assistance

(6) Power evaluation

The power evaluation provides you with a graphic display of the current speed (white bar) in relation to the average speed.

You can see directly if your current speed is above or below your average speed.
Left of the line = below average speed;
right of the line = above average speed.

(9) Guidance bar

The guidance bar will tell you which screen you are currently displaying. Your current screen is highlighted. You can use the <- and >- buttons to switch to other screens.

(11) Settings

You use the STATUS SCREEN to access the SETTINGS. You cannot open and adjust the SETTINGS while riding.
You can use the **plus button** (4) and the **minus button** (6) to select the required setting and use the select button to open it and other further sub-menus. You can use the <- button in the current setting menu to return to the previous menu.

You will find the following superior sections on the first navigation level:

<table>
<thead>
<tr>
<th>Screen display</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGISTRATION</td>
<td>Information on registration, at a later stage</td>
</tr>
<tr>
<td>MY EBIKE</td>
<td>Settings for your eBike: You can set counters such as daily mileage and average values automatically or manually to "0" and also reset the range. You can change the wheel circumference value that the manufacturer pre-set by ± 5%. If your eBike is equipped with eShift, you can also configure your eShift system here. The bicycle manufacturer or bicycle dealer can enter a mileage and/or period for the inspection date. The due date for your inspection is displayed under <Service (next eBike service): [DD. MM. YYYY] or at [xxxxx][km]> The bike components page shows you the respective component serial numbers, hardware and software versions and other specifications relevant for components.</td>
</tr>
<tr>
<td>MY PROFILE</td>
<td>The active user's details</td>
</tr>
<tr>
<td>BLUETOOTH</td>
<td>Switching on and off the Bluetooth® function: Connected devices are shown.</td>
</tr>
<tr>
<td>SYS SETTINGS</td>
<td>A list of options to adjust your on-board computer: You can set the speed and distance in kilometres or miles and display the clock in 12-hour or 24-hour format. You can also select the time, date and time zone and set your required language. You can reset Kiox to the factory settings, execute a software update (if available) and select a black or white design.</td>
</tr>
<tr>
<td>INFORMATION</td>
<td>Information on your Kiox: Information on FAQs (frequently asked questions), certifications, contact details, information on licences.</td>
</tr>
</tbody>
</table>
Technical data

Bicycle

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation temperature</td>
<td>41°F–77 °F</td>
</tr>
<tr>
<td>Ideal transportation temperature</td>
<td>50°F–59 °F</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>41°F–77 °F</td>
</tr>
<tr>
<td>Ideal storage temperature</td>
<td>50°F–59 °F</td>
</tr>
<tr>
<td>Operation temperature</td>
<td>41°F–95 °F</td>
</tr>
<tr>
<td>Working environment temperature</td>
<td>59°F–77 °F</td>
</tr>
<tr>
<td>Charging temperature</td>
<td>50°F–86 °F</td>
</tr>
<tr>
<td>Power output/system</td>
<td>250 W (0.25 kW)</td>
</tr>
<tr>
<td>Shut-off speed - Class 1 bicycle</td>
<td>20 mph</td>
</tr>
<tr>
<td>Shut-off speed - Class 3 bicycle</td>
<td>28 mph</td>
</tr>
<tr>
<td>Weight of the ready-to-ride bicycle</td>
<td>See type plate</td>
</tr>
</tbody>
</table>

Table 14: Bicycle technical data

Rechargeable battery

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation temperature</td>
<td>41°F–77 °F</td>
</tr>
<tr>
<td>Ideal transportation temperature</td>
<td>50°F–59 °F</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>41°F–77 °F</td>
</tr>
<tr>
<td>Ideal storage temperature</td>
<td>50°F–59 °F</td>
</tr>
<tr>
<td>Charging ambient temperature</td>
<td>50°F–86 °F</td>
</tr>
</tbody>
</table>

Table 15: Rechargeable battery technical data
Technical data

Display

<table>
<thead>
<tr>
<th>Internal lithium ion battery</th>
<th>3.7 V, 230 mAh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>23°F–104 °F</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>14°F–122 °F</td>
</tr>
<tr>
<td>Charging temperature</td>
<td>32 °F–104°F</td>
</tr>
<tr>
<td>Protection rating</td>
<td>IPx7</td>
</tr>
<tr>
<td>(with USB cover closed)</td>
<td></td>
</tr>
<tr>
<td>Weight about</td>
<td>0.60 kg</td>
</tr>
<tr>
<td>BLUETOOTH low energy®</td>
<td></td>
</tr>
<tr>
<td>- Frequency</td>
<td>2400–2480 MHz</td>
</tr>
<tr>
<td>- Transmitting capacity</td>
<td>< 10 mW</td>
</tr>
</tbody>
</table>

Table 16: Display technical data

Emissions

A-weighted emission sound pressure level	< 70 dB(A)
Total vibration level for the hands and arms	< 2.5 m/s²
Highest effective value of weighted acceleration for the entire body	< 0.5 m/s²

Table 17: Emissions from the bicycle*

*The safety requirements as per Electromagnetic Compatibility Directive 2014/30/EU have been met. The bicycle and the charger can be used in residential areas without restriction.

USB port

| Charge voltage | 5 V |
| Charging current | max. 500 mA |

Table 18: USB port technical data
Technical data

Tightening torque

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axle nut tightening torque</td>
<td>35 Nm - 40 Nm</td>
</tr>
<tr>
<td>Handlebars clamping screw maximum tightening torque*</td>
<td>5 Nm - 7 Nm</td>
</tr>
</tbody>
</table>

Table 19: Tightening torque values*

*if there is no other data on the component
5 Transportation, storage and assembly

5.1 Transportation

Crash caused by unintentional activation

There is a risk of injury if the drive system is activated unintentionally.

- Remove the battery before the bicycle is transported.

Risk of fire and explosion due to high temperatures

Excessively high temperatures will damage the battery. Batteries may self-ignite and explode.

- Never expose batteries to sustained direct sunlight.

Oil leak if no transport securing device

The brake securing device prevents the brakes from being applied accidentally during transport. This could cause irreparable damage to the brake system or an oil leak, which will harm the environment.

- Never pull the brake lever when the wheel has been dismounted.

- Always use the transport securing system when transporting dismounted wheels.

Notice

If the bicycle is lying flat, oil and grease may leak from the bicycle.

If the shipping box with a bicycle is lying flat or on one end, it does not provide the frame and the wheels with adequate protection from damage.

- Only transport the bicycle in an upright position.
Transportation, storage and assembly

NOTICE

Bicycle rack systems which secure the bicycle standing on its head by the *handlebars* or *frame*, generate inadmissible forces on the components during transportation. This can cause the supporting parts to break.

- Never use bicycle rack systems which secure the bicycle standing on its head by the *handlebars* or *frame*.

- Take into account the ready-to-use bicycle’s weight when transporting it.

- Remove the *display* and the batteries before transporting the bicycle.

- Protect the electrical components and connections on the bicycle from the elements with suitable protective covers.

- Remove accessories, for example drinking bottles, before transportation of the bicycle.

- When transporting by car, you must use a suitable bicycle rack system.

The specialist dealer will advise you on how to select a suitable rack system properly and how to use it safely.

- Transport the bicycle in a dry, clean place where it is protected from direct sunlight.

When shipping the bicycle, we recommend that you have the bicycle partially dismantled in the proper manner and packaged by the specialist dealer.
Transportation, storage and assembly

5.1.1 Using the transport securing system
- Insert the transport securing devices between the brake linings.
- The transport securing device is squeezed between the two linings.

![Figure 17: Fastening the transport securing device](image)

5.2 Storing

Risk of fire and explosion due to high temperatures
Excessively high temperatures will damage batteries. Batteries may self-ignite and explode.
- Protect batteries against heat
- Never expose batteries to sustained direct sunlight.

CAUTION
If the bicycle is lying flat, oil and grease may leak from the bicycle.

NOTICE
If the shipping box with a bicycle is lying flat or on one end, it does not provide the frame and the wheels with adequate protection from damage.

- Only store the bicycle in an upright position.
Transportation, storage and assembly

- If the bicycle features a hydraulic seat post, fix only the lower seat post or the frame into a fitting stand to prevent damage to the upper seat post and the seat post lever.

- Never place a bicycle with a hydraulic seat post upside down on the floor; otherwise you will damage the seat post lever.

- Store the bicycle, battery and charger in a dry, clean location.

<table>
<thead>
<tr>
<th>Storage temperature</th>
<th>41°F–77°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal storage temperature</td>
<td>50°F–59 °F</td>
</tr>
</tbody>
</table>

Table 20: Storage temperature for batteries, the bicycle and charger

5.2.1 Break in operation

The battery discharges when not in use. This can cause irreparable damage to the battery.

- The battery must be recharged every 8 weeks.

The battery may become damaged if it is connected permanently to the charger.

- Do not connect the battery to the charger permanently.

The display battery discharges when it is not in use. This can cause it to be irreparably damaged.

- Recharge the display battery for at least 1 hour every 3 months.

If the bicycle is to be removed from service for longer than four weeks, e.g. in winter, a break in operation has to be prepared.
5.2.1.1 Preparing a break in operation

✔ Enable display storage mode.
✔ Remove the battery from the bicycle.
✔ Charge the battery to around 60% (three to four LEDs of the charge status indicator light up).
✔ The bicycle has to be cleaned with a damp cloth and preserved with wax spray. Never wax the friction surfaces of the brake.
✔ Before longer periods without use, it is recommendable to have your specialist dealer carry out servicing and basic cleaning and apply preservative agent.

5.2.1.2 Taking out of operation

► Store the bicycle, battery and charger in a dry, clean environment.
► Recharge the display battery for at least 1 hour every 3 months.
► Check the charge status of the battery after 8 weeks. If only one LED on the charge status indicator lights up, recharge the battery to around 60%.
Transportation, storage and assembly

5.3 Assembly

Crushing caused by unintentional activation

There is a risk of injury if the drive system is activated unintentionally.

- Remove the battery if it is not absolutely necessary for assembly.

- Assemble the bicycle in a clean and dry environment.

- The working environment temperature should be between 59 °F and 77 °F.

<table>
<thead>
<tr>
<th>Working environment temperature</th>
<th>59°F–77 °F</th>
</tr>
</thead>
</table>

Table 21:

<table>
<thead>
<tr>
<th>Working environment temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a fitting stand is used, it must be approved for a maximum weight of 30 kg.</td>
</tr>
<tr>
<td>To reduce the weight, we recommend that you always disconnect the battery from the bicycle when using the fitting stand.</td>
</tr>
</tbody>
</table>

5.3.1 Required tools

The following tools are required to assemble the bicycle:

- Knife
- Hexagon socket spanner 2 (2.5 mm, 3 mm 4 mm, 5 mm, 6 mm and 8 mm)
- Torque wrench with working range between 5 and 40 Nm
- Twelve-point square socket T-25
- Ring spanner (8 mm, 9 mm, 10 mm, 13 mm, 14 mm and 15 mm) and
- Cross, flat head and ordinary screwdriver.
5.3.2 Unpacking

Hand injuries caused by cardboard packaging

The shipping carton is closed with metal staples. There is a risk of puncture wounds and cuts when unpacking and crushing the packaging.

▶ Wear suitable hand protection.

▶ Remove the metal staples with pliers before the shipping carton is opened.

The packaging material consists mainly of cardboard and plastic film.

▶ The packaging has to be disposed of in accordance with the regulations of the authorities.

5.3.3 Scope of delivery

The bicycle was completely assembled in the factory for test purposes and then dismantled for transportation.

The bicycle is 95–98% pre-assembled. The scope of delivery includes:

• the pre-assembled bicycle
• the front wheel
• the pedals
• quick release (optional)
• the charger
• the operating instructions.

The battery is supplied separately from the bicycle.
5.3.4 Commissioning

Fire and explosion caused by incorrect charger

Batteries which are recharged with an unsuitable charger may become damaged internally. This may result in fire or an explosion.

- Only ever use the battery with the supplied charger.
- Mark the supplied charger and these operating instructions clearly to prevent mix-ups – with the bicycle frame number or type number, for example.

Since initial commissioning of the bicycle requires special tools and specialist knowledge, only trained specialist staff may perform initial commissioning.

Experience has shown that a bicycle which has not yet been sold, is spontaneously handed to consumers as soon as it appears ready to ride.

- For this reason, every bicycle must be prepared, so that it is fully ready for use immediately after being assembled.
- Staff should work through the initial commissioning check list to prepare the bicycle, so that it is ready to ride.
Initial commissioning check list

- Deactivate display storage mode.
- Check battery.
- The battery is partially charged when delivered. Fully charge the battery to ensure full power.
- Mount the wheels, quick release and pedals.
- Re-adjust the quick release clamping force if necessary.
- Thoroughly degrease the brake discs in disc brakes or the brake sides and linings in rim brakes with brake cleaner or spirit.
- Place handlebars, stem and saddle in the functional position and check they are firmly in place.
- Check all the components to make sure that they are firmly in place. Check all the settings and the tightening torque on the axle nuts.
- Check the entire cable harness to make sure that it is routed properly:
 - You must prevent the cable harness from coming into contact with moving parts.
 - The cable routes must be smooth and free from sharp edges.
 - Moving parts must not apply any pressure or tension to the cable harness.
- Check the drive system, the light equipment and the brakes to make sure that they are fully functional and effective.
- Adjust the headlight.
- Set the drive system has to the national language and the appropriate system of measurement.
- Check the software version of the drive system and update it as necessary.
- Take a test drive to check the brake system, gear shift and the electric drive system.
5.3.4.1 Checking the battery

Fire and explosion due to defective battery

The safety electronics may fail if the battery is damaged or defective. The residual voltage can cause a short circuit. Batteries may self-ignite and explode.

- Never charge a defective battery.

The battery must be checked before it is charged for the first time.

- Press the **On-Off button (battery)**.
 - If none of the LEDs on the operating and charge status indicator light up, the battery may be damaged.
 - The battery can be charged if at least one of the LEDs on the operating and charge status indicator is fully lit up, but not if all of them are.

- Once the battery has been charged, insert it into the bicycle.

5.3.4.2 Charging the display

- Insert the display with the lower section on the mount.
- Gently fold the display forwards.
 - The display is clearly fastened into the magnetic mount.
- Kiox is delivered with a partially charged battery. This battery must be charged via the USB port or the drive system for at least one hour before it is used for the first time.
- The control panel should be attached in such a way that the buttons are almost vertical to the handlebars.
5.3.4.3 Adjusting the display settings

- Settings must be made when the bicycle is stationary only.
- Insert the display in its mount.
- Press the browse backwards button. The status screen is open.
- Press the select button. The SETTINGS page will open.
- Press the select button. The SYSTEM SETTINGS page will open.

You can make the following settings on the SYSTEM SETTINGS page:

<table>
<thead>
<tr>
<th>Screen display</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><BRIGHTNESS></td>
<td>Change the display brightness</td>
</tr>
<tr>
<td><TIME></td>
<td>The clock can be adjusted in the Hour: Minute [HH:MM] format</td>
</tr>
<tr>
<td><DATE></td>
<td>The date can be adjusted in the Day.Month.Year [DD.MM.YYYY] format</td>
</tr>
<tr>
<td><TIME ZONE></td>
<td>Select time zone</td>
</tr>
<tr>
<td><24H FORM></td>
<td>Select whether the time is displayed in 12-hour clock or 24-hour clock format</td>
</tr>
<tr>
<td><LIGHT BACKG.></td>
<td>You can change the screen background brightness</td>
</tr>
<tr>
<td><IMPERIAL></td>
<td>The units can be set to km/h or mph</td>
</tr>
<tr>
<td><LANGUAGE></td>
<td></td>
</tr>
<tr>
<td><FACTORY RESET></td>
<td>The display can be reset to the default settings on delivery</td>
</tr>
</tbody>
</table>

Table 22: Changeable system settings

- Use the plus and minus buttons to make the required settings.
- Press on the select button to open the selected setting and any further sub-menus.
- Press on the browse backwards button to return to the previous page.
Transportation, storage and assembly

5.3.5 Mounting the wheel in the Suntour fork

5.3.5.1 Mounting the wheel with screw-on axle (15 mm)

 Alternative

- Insert the axle completely on the drive side.

Figure 18: Fully inserting the axle

- Tighten the axle with a 5 mm hexagon socket spanner to 8–10 Nm.

Figure 19: Tightening the axle
Transportation, storage and assembly

- Insert the securing screw on the non-drive side.

Figure 20: Pushing the quick release lever into the axle

- Tighten the securing screw with a 5 mm hexagon socket spanner to 5–6 Nm.

⇒ The lever is mounted.

Figure 21: Tightening the securing screw
Transportation, storage and assembly

5.3.5.2 Mounting the wheel with screw-on axle (20 mm)

Alternative

- Insert the axle completely on the drive side.

Figure 22: Tightening the inserted axle

- Tighten the securing clip with a 4 mm hexagon socket spanner to 7 Nm.

Figure 23: Tightening the axle
5.3.5.3 Mounting the wheel with a quick release axle

Alternative

Crash caused by loose quick release axle

A faulty or incorrectly installed quick release axle may become caught in the brake disc and block the wheel. This will cause a crash.

- Never fit a defective quick release axle.

Crash caused by faulty or incorrectly installed quick release axle

The brake disc becomes very hot during operation. Parts of the quick release axle may become damaged as a result. The quick release axle becomes loose. This will result in a crash and injuries.

- The quick release axle and the brake disc must be opposite one another.

Crash caused by incorrectly set quick release axle

Insufficient clamping force will cause a detrimental transmission of force. The suspension fork or the quick release axle may break. This will result in a crash and injuries.

- Never fasten a quick release axle with a tool, such as a hammer or pliers.
Transportation, storage and assembly

- Insert the axle into the hub on the drive side.
 Clamping version II.

Figure 24: Pushing the axle into the hub

- Tighten the axle with the red handle.

Figure 25: Tightening the axle
Transportation, storage and assembly

- Push the quick release lever into the axle.

Figure 26: Pushing the quick release lever into the axle

- Reverse the quick release lever.

Figure 27: Securing the lever

⇒ The lever is secured.
Transportation, storage and assembly

- Check the position and clamping force of the quick release lever. The quick release lever must be flush with the lower housing. You must be able to see a slight impression on the palm of your hand when you close the quick release lever.

Figure 28: Perfect position for the clamping lever

- Use a 4 mm hexagon socket spanner to adjust the clamping lever clamping force if required. Afterwards, check the quick release lever position and clamping force.

Figure 29: Adjusting the quick release clamping force
Transportation, storage and assembly

5.3.6 Mounting the wheel with a quick release

Alternative

CAUTION

Crash caused by unfastened quick release

A faulty or incorrectly installed quick release may become caught in the brake disc and block the wheel. This will cause a crash.

▶ Never fit a defective quick release.

CAUTION

Crash caused by faulty or incorrectly installed quick release

The brake disc becomes very hot during operation. Parts of the quick release may become damaged as a result. The quick release comes loose. This will result in a crash and injuries.

▶ The front wheel quick release lever and the brake disc must be situated on opposite sides.

CAUTION

Crash caused by incorrectly set clamping force

Excessively high clamping force will damage the quick release and cause it to lose its function.

Insufficient clamping force will cause a detrimental transmission of force. The suspension fork or the quick release may break. This will result in a crash and injuries.

▶ Never fasten a quick release using a tool (e.g. hammer or pliers).

▶ Only use the clamping lever with the specified set clamping force.
Transportation, storage and assembly

- Before mounting, ensure that the quick release flange is extended. Open the lever completely.

![Open and closed flange](image)

- Push in the quick release until you hear a clicking sound. Make sure that the flange is extended.

![Pushing the quick release in](image)
Transportation, storage and assembly

- Adjust the clamping with a half-open clamping lever until the flange reaches the fork end.

![Adjusting the clamping](image)

Figure 32: Adjusting the clamping

- Fully close the quick release. Check the quick release to ensure it is firmly in place and adjust on the flange if necessary.

⇒ The lever is secured.

![Closing the quick release](image)

Figure 33: Closing the quick release
Transportation, storage and assembly

5.3.7 Mounting the wheel in the FOX fork

Alternative

5.3.7.1 Mounting the wheel with the quick release (15 mm)

Alternative

The procedure for installing the 15 x 100 mm and 15 x 110 mm quick releases is the same.

➤ Place the front wheel in the fork ends of the fork. Push the axle through the fork end on the non-drive side and hub.

Figure 34: Pushing the quick release in

➤ Open the axle lever.

➤ Turn the axle five to six complete revolutions clockwise into the axle nut.

➤ Close the quick release. The lever must be tensioned to the point that it leaves a mark on your hand.
Transportation, storage and assembly

The lever must be 1 to 20 mm ahead of the fork leg in the closed position.

Figure 35: Spacing between lever and fork leg

⇒ If the lever is tensioned too little or too much when closed in the recommended position (1 to 20 mm ahead of the fork), the quick release must be adjusted.

5.3.7.2 Adjusting the FOX quick release

Figure 36: Structure of quick release from rear with (1) axle nut lock, (2) axle nut securing screw, (3) directional arrow, (4) axle setting value and (5) axle nut
Transportation, storage and assembly

- Record the axle setting value (4) indicated by the directional arrow (3).
- Loosen the axle nut securing screw (2) with a 2.5 mm hex key by approx. four revolutions, but do not remove the screw completely.
- Turn the quick release lever to the open position and loosen the axle by approx. four revolutions.
- Press the axle inward from the side of the open lever. This pushes out the axle nut securing screw so that you can turn it out of the way.
- Push the axle further forward and turn the axle nut clockwise to increase the lever tension or anti-clockwise to reduce the lever tension.
- Reinsert the axle nut lock and tighten the screw to 0.9 Nm (8 in-lb).
- Repeat the steps for installing the axle to check proper installation and correct adjustment.
5.3.7.3 Mounting the wheel with Kabolt axles

Alternative

The procedure for installing the 15 x 100 mm and 15 x 110 mm Kabolt axles is the same.

- Place the front wheel in the fork ends of the fork. Push the Kabolt axle through the fork end on the non-drive side and hub.

![Pushing the Kabolt axle in](image)

- Tighten the Kabolt axle screw to 17 Nm (150 in-lb) with a 6 mm hex key.
5.3.7.4 Checking the stem and handlebars

Checking connections

► Stand in front of the bicycle to check whether the handlebars, stem and fork shaft are firmly attached to one another. Clamp the front wheel between your legs. Grasp the handlebar grips. Try to twist the handlebars towards the front wheel.

☞ The stem must not move or twist.

Firm hold

► Place your entire body weight on the handlebars with the quick release lever closed to check that the stem is firmly in place.

☞ The handlebars shaft must not move downwards in the fork shaft.

► If the handlebars shaft should move in the fork shaft, increase the quick release lever tensioning. To do so, turn the knurled nut slightly in a clockwise direction with the quick release lever open.

► Close the lever and check the stem is firmly in position.
Transportation, storage and assembly

Checking the headset backlash

- To check the handlebar headset backlash, close the quick release lever on the stem. Place the fingers of one hand on the upper headset cup, pull the front wheel brake with the other hand and try to push the bicycle backwards and forwards.

- The headset cup halves must not move towards one another while you are doing this. Note that there may be noticeable backlash due to worn-out bearing bushes or brake lining backlash in suspension forks and disc brakes.

- If there is headset backlash in the steering headset, you must adjust it as soon as possible; otherwise, the headset will become damaged. You must make the adjustment as described in the stem manual.

Sale of the bicycle

- Fill out the data sheet on the first page of the operating instructions.

- Adjust the bicycle to the rider.

- Set the stand and the shifter, and show the purchaser the settings.

- Instruct the operator or rider how to use all the functions of the bicycle.
Before the first ride

6 Before the first ride

Crash caused by incorrectly adjusted torques

If a screw is fastened too tightly, it may break. If a screw is not fastened enough, it may loosen. This will result in a crash and injuries.

► Always observe the indicated torques on the screw or in the operating instructions.

Only a correctly adjusted bicycle will guarantee you the desired ride comfort and health-promoting activity. Therefore adjust the saddle, the handlebars and the suspension to your body and your preferred riding style before the first ride.

6.1 Adjusting the saddle

6.1.1 Adjusting the saddle tilt

The saddle tilt must be adjusted to the seat height, the saddle and handlebar position, and the saddle shape to ensure an optimum fit. The seating position can be optimised in this way if needed. First, readjust the saddle after finding the handlebar position you prefer.
Before the first ride

Place the saddle tilt in the horizontal position to adjust the bicycle to your needs for the first time.

Figure 38: Horizontal saddle tilt

6.1.2 Determining the seat height

✓ To determine the seat height safely, either push the bicycle near to a wall, so that you can lean on the wall to support yourself or ask another person to hold the bicycle for you.

► Climb onto the bicycle.

► Place your heel on the pedal and extend your leg, so that the pedal is at the lowest crank rotation point.

✓ The rider sits straight on the saddle if the seat is at an optimum height. If this is not the case, you can adjust the length of the seat post to your needs.
Before the first ride

6.1.3 Adjusting the seat height with quick release

- Open the quick release on the seat post to change the seat height. To do so, pull the clamping lever away from the seat post.

Figure 39: Optimal saddle height

Figure 40: Seat post quick release (3) with clamping lever (5) and setting bolt (4) in the open position (1) and in the direction of the closed position (2)
Before the first ride

▶ Set the seat post at the required height.

CAUTION

Crash caused by an excessively high seat post setting

A seat post with is set too high will cause the seat post or the frame to break. This will result in a crash and injuries.

▶ Do not pull the seat post out of the frame beyond the minimum insertion depth marking.

6.1.4 Setting the height-adjustable seat post

▶ When using your seat post for the first time, you must give it a firm push downwards to set it in motion. This is due to the natural tendency of the seal to repel oil from the seal surface. You only need to do this before the first use or after a longer period of non-use. Once you have displaced the post through its deflection, the oil spreads on the seal and the post begins to function normally.
Before the first ride

Figure 42: The seat post activation lever can be mounted either on the left (1) or the right (2) side of the handlebars

6.1.4.1 Lowering the saddle

✓ To lower the saddle, press your hand down on the saddle or sit on the saddle.

▶ Press the seat post activation lever and hold it down.

▶ Release the lever once you have reached the required height.

6.1.4.2 Raising the saddle

▶ Pull the seat post activation level.

▶ Remove any pressure on the saddle and release the lever once you have reached the required height.
Before the first ride

6.1.5 Adjusting the seat position

The saddle can be shifted on the saddle frame. The right horizontal position ensures an optimal leverage position for legs. This prevents knee pain and painful incorrect pelvis positions. If you have displaced the saddle more than 10 mm, you then need to adjust the saddle height again since both settings affect one another.

✔ To adjust the seat position safely, either push the bicycle near to a wall, so that you can lean on the wall to support yourself or ask another person to hold the bicycle for you.

▲ Climbing onto the bicycle.

▲ Place the pedals into the vertical position (3 o’clock position) with your feet.

⇒ The rider is sitting in the optimal sitting position if the knee cap perpendicular line runs through the pedal axle. If the perpendicular line crosses behind the pedal, bring the saddle forward. If the perpendicular line crosses in front of the pedal, bring the saddle back. Move the saddle within its permitted displacement range only (marked on the saddle stay).

Figure 43: Knee cap perpendicular line
Before the first ride

6.2 Adjusting the handlebars

- The handlebars must only be adjusted while the bicycle is stationary.
- Unfasten and adjust the designated screw connections, and clamp them with the maximum tightening torque for the clamping screws of the handlebars.

Table 23: Handlebars clamping screw maximum tightening torque

| Maximum tightening torque for the clamping screws of the handlebars* | 5 Nm - 7 Nm |

*if there is no other data on the component

Crash caused by loose stem

Incorrectly fastened screws may come loose due to impact. The stem may no longer be firmly fixed in its position as a result. This will result in a crash and injuries.

- Check the handlebars and the quick release system are firmly in position after the first two hours of riding.
6.2.1 Adjusting the height of the handlebars

CAUTION

Crash caused by incorrectly set clamping force

Excessively high clamping force will damage the quick release and cause it to lose its function. Insufficient clamping force will cause a detrimental transmission of force. This can cause components to break. This will result in a crash and injuries.

- Never fasten a quick release using a tool (e.g. hammer or pliers).
- Only use the clamping lever with the specified set clamping force.

- Open the clamping lever.
- Pull the locking lever on the stem up, and simultaneously pivot the handlebars into the desired position.
- You feel the locking lever click into place.
- Pull out the handlebars to the required height.
- Lock the quick release.

![Open (2) and closed (1) clamping lever on the stem; by.schulz speedlifter used as an example](image)

Figure 44:
Before the first ride

6.2.2 Turning the handlebars to the side

Alternative

CAUTION

Crash caused by incorrectly set clamping force

Excessively high clamping force will damage the quick release and cause it to lose its function.

Insufficient clamping force will cause a detrimental transmission of force. This will result in a crash and injuries.

- Never fasten a quick release using a tool (e.g. hammer or pliers).
- Only use the clamping lever with the specified set clamping force.

- Open the clamping lever.
- Pull the locking lever on the stem up, and simultaneously pivot the handlebars into the desired position.

☞ You feel the locking lever click into place.
- Pull out the handlebars to the required height.
- Lock the quick release.

Figure 45: Pulling locking lever upwards; by.schulz speedlifter used as an example
Before the first ride

6.2.2.1 Checking the clamping force of the quick releases

- Open and close the quick releases on the stem or the seat post.

- The clamping force is sufficient if the clamping lever can be moved easily from the open final position into the middle and has to be pressed with the fingers or base of the thumb from the middle point onwards.

6.2.2.2 Adjusting the quick release clamping force

- If the clamping lever on the handlebars cannot be moved into its final position, screw out the knurled nut.

- Tighten the knurled nut on the seat post if the clamping lever's clamping force is not sufficient.

If you are unable to set the clamping force, the specialist dealer will need to check the quick release.

6.3 Adjusting the brake lever

6.3.1 Adjusting the pressure point on a Magura brake lever

WARNING

Brake failure due to incorrect setting

If the pressure point is set with brakes where the brake lining and brake disc have reached their wear limit, the brakes may fail and cause an accident with injury.

- Before you set the pressure point, ensure that the brake lining and brake disc have not reached their wear limit.

The pressure point setting is adjusted using the twist knob.

- Turn the twist knob towards the plus (+) symbol.
Before the first ride

✧ The brake lever moves closer to the handlebar grip. Re-adjust the grip distance as necessary.

✧ The lever pressure point activates sooner.

Figure 46: Using the twist knob (1) to adjust the pressure point

6.3.2 Adjusting the grip distance

WARNING

Crash caused by incorrectly set grip distance

If brake cylinders are set incorrectly or installed wrongly, the braking power may be lost at any time. This may cause you to fall from the bicycle and injure yourself.

▶ Once the grip distance has been set, check the position of the brake cylinder and adjust it as necessary.

▶ Never correct the brake cylinder position without special tools. Have a specialist dealer correct it.

The brake lever grip distance can be adjusted to ensure that it can be reached more easily. Contact your specialist dealer if the brake handle is too far from the handlebars or is hard to use.
6.3.2.1 Adjusting the grip distance on a Magura brake lever

Alternative

Use a T25 TORX® wrench to turn the setting screw to adjust the grip distance.

- Turn the setting screw in the minus (-) direction. ⇒ The brake lever moves closer to the handlebar grip.
- Turn the setting screw in the plus (+) direction. ⇒ The brake lever moves away from the handlebar grip.

Figure 47: Brake lever grip distance

Figure 48: Using the setting screw (2) to adjust the distance from the brake lever to the handlebar grip (1)
Before the first ride

6.4 Adjusting the suspension of the Suntour fork

Alternative

The following Suntour forks can be installed in this series of models:

<table>
<thead>
<tr>
<th>Fork Type</th>
<th>Suspension Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aion-35 Boost</td>
<td>Air suspension fork</td>
</tr>
<tr>
<td>NCX</td>
<td>Air suspension fork</td>
</tr>
<tr>
<td>NEX</td>
<td>Steel suspension fork</td>
</tr>
<tr>
<td>XCM-ATB</td>
<td>Steel suspension fork</td>
</tr>
<tr>
<td>XCM</td>
<td>Steel suspension fork</td>
</tr>
<tr>
<td>XCR32</td>
<td>Air suspension fork</td>
</tr>
<tr>
<td>XCR34</td>
<td>Air suspension fork</td>
</tr>
</tbody>
</table>

Table 24: Overview of Suntour forks

Crash caused by incorrectly set suspension

If the suspension is adjusted incorrectly, the fork may become damaged, so that problems may occur when steering. This will result in a crash and injuries.

- Never ride the bicycle without air in the air suspension fork.
- Never use the bicycle without adjusting the suspension fork to the rider's weight.

Settings on the chassis change riding performance significantly. You need to get used to the bicycle and break it in to prevent accidents.

The adjustment shown here represents a basic setting. The rider should change the basic setting to suit the surface and his/her preferences.
Before the first ride

- It is advisable to make a note of the basic setting. This way, it can be used as the starting point for subsequent, optimised settings and to safeguard against unintentional changes.

6.4.1 Adjusting the negative deflection

Negative deflection (SAG) is compression of the fork caused by the weight of the rider and their gear (e.g. a backpack), the sitting position and the frame geometry. This "SAG" is not caused by riding.

Each rider has a different weight and sitting position. "SAG" depends on the rider's position and weight and should be between 15% and 30% of the maximum fork deflection, depending on bicycle usage and preferences.

6.4.1.1 Adjusting the air suspension fork negative deflection

Alternative

- The air valve is located under a cover on the head of the left shock absorber. Screw off the cover.

![Screw caps in different designs](image)

- Screw a high-pressure pump onto the valve.

- Pump the suspension fork up to the desired pressure. Never exceed the recommended maximum air pressure. Comply with the values of the filling pressure table.
Before the first ride

- Remove the high-pressure pump.

<table>
<thead>
<tr>
<th>Rider weight</th>
<th>AION, NEX</th>
<th>XCR 32, XCR 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 55 kg</td>
<td>35 - 50 psi</td>
<td>40 - 55 psi</td>
</tr>
<tr>
<td>55 - 65 kg</td>
<td>50 - 60 psi</td>
<td>55 - 65 psi</td>
</tr>
<tr>
<td>65 - 75 kg</td>
<td>60 - 70 psi</td>
<td>65 - 75 psi</td>
</tr>
<tr>
<td>75 - 85 kg</td>
<td>70 - 85 psi</td>
<td>75 - 85 psi</td>
</tr>
<tr>
<td>85 - 95 kg</td>
<td>85 - 100 psi</td>
<td>85 - 95 psi</td>
</tr>
<tr>
<td>< 100 kg</td>
<td>+ 105 psi</td>
<td>+ 100 psi</td>
</tr>
<tr>
<td>Max. pressure</td>
<td>150 psi</td>
<td>180 psi</td>
</tr>
</tbody>
</table>

Table 25: Filling pressure pump of the Suntour air forks

- Measure the distance between the crown and the dust wiper of the fork. This distance is the total deflection of the fork.
- Push a temporarily attached cable tie downward against the dust wiper of the fork.
- Put on your usual bicycling clothing, including luggage.
- Sit on the bicycle in your usual riding position and support yourself (e.g. against a wall or tree).
- Get off the bicycle without allowing it to deflect.
- Measure the distance between the dust wiper and the cable tie. This dimension is the "SAG." The "SAG" value should be between 15% (hard) and 30% (soft) of the total fork deflection.
- Increase or reduce the air pressure until you have reached the desired "SAG."
Before the first ride

-> Once the "SAG" is correct, re-tighten the blue air cover cap clockwise.

If you cannot achieve the desired "SAG", you may need to make an internal adjustment. For this purpose, contact your specialist dealer.

6.4.1.2 Adjusting the steel suspension fork negative deflection

Alternative

You can adjust the fork by tensioning the spring to the rider's weight and their preferred riding style. It is not the coil spring hardness which is adjusted; it is its pre-tensioning. This reduces the fork's negative deflection when the rider sits on the bicycle.

![Negative deflection setting wheel on the suspension fork crown](image)

- The setting wheel may be located under a plastic cover on the suspension fork crown. Remove the plastic cover by pulling it off upwards.

- Turn the negative deflection setting wheel in a clockwise direction to increase the spring pre-tensioning. Turn the negative deflection setting wheel in an anti-clockwise direction to reduce it.
Before the first ride

- The ideal setting in relation to the weight of the rider has been achieved when the shock absorber deflects 3 mm under the stationary load of the rider. Reattach the cover after the adjustment.

6.4.2 Adjusting the rebound

Alternative

The rebound defines the speed at which the fork rebounds after being loaded. The rebound setting depends on the air pressure setting. Higher "SAG" settings require lower rebound settings.

- Turn the rebound adjuster clockwise to the closed position until it stops.

![Diagram of Suntour rebound adjuster](image)

Figure 51: Suntour rebound adjuster (2) on the fork (1)

- Turn the rebound adjuster anti-clockwise.

- Adjust the rebound in such a way that the fork rebounds quickly, but without bottoming out upward during testing. Bottoming out is where the fork rebounds too quickly and stops moving abruptly once it has reached the full rebound distance. You will hear and feel a slight knock when this occurs.
Before the first ride

6.5 Adjusting the suspension of the FOX fork

Alternative

CAUTION

Crash caused by incorrectly set suspension

If the suspension is adjusted incorrectly, the fork may become damaged, so that problems may occur when steering. This will result in a crash and injuries.

- Never ride the bicycle without air in the air suspension fork.
- Never use the bicycle without adjusting the suspension fork to the rider's weight.

NOTICE

Settings on the chassis change riding performance significantly. You need to get used to the bicycle and break it in to prevent accidents.

The adjustment shown here represents a basic setting. The rider should change the basic setting to suit the surface and his/her preferences.

- It is advisable to make a note of the basic setting. This way, it can be used as the starting point for subsequent, optimised settings and to safeguard against unintentional changes.

6.5.1 Adjusting the negative deflection

Negative deflection (SAG) is compression of the fork caused by the weight of the rider and their gear (e.g. a backpack), the sitting position and the frame geometry. This "SAG" is not caused by riding. Each rider has a different weight and sitting position. "SAG" depends on the rider's position and weight and should be between 15% and 20% of the maximum fork deflection, depending on bicycle usage and preferences.
Before the first ride

- When adjusting the "SAG", ensure that each compression adjuster is in the open position, i.e. turned clockwise until it stops.
- The pressure is to be measured at an ambient temperature of 70 to 75 °F.
- The air valve is located under a blue cover on the head of the left shock absorber. Screw off the cover anti-clockwise.
- Place a high-pressure pump on the valve.
- Pump the suspension fork up to the desired pressure. Never exceed the recommended maximum air pressure. Comply with the values of the filling pressure table.
- Remove the high-pressure pump.

<table>
<thead>
<tr>
<th>Rider weight</th>
<th>Rhythm 34</th>
<th>Rhythm 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum air pressure</td>
<td>40 psi (2.8 bar)</td>
<td>40 psi (2.8 bar)</td>
</tr>
<tr>
<td>54 - 59 kg</td>
<td>58 psi</td>
<td>55 psi</td>
</tr>
<tr>
<td>59 - 64 kg</td>
<td>63 psi</td>
<td>59 psi</td>
</tr>
<tr>
<td>64 - 68 kg</td>
<td>68 psi</td>
<td>63 psi</td>
</tr>
<tr>
<td>68 - 73 kg</td>
<td>72 psi</td>
<td>67 psi</td>
</tr>
<tr>
<td>73 - 77 kg</td>
<td>77 psi</td>
<td>72 psi</td>
</tr>
<tr>
<td>77 - 82 kg</td>
<td>82 psi</td>
<td>76 psi</td>
</tr>
<tr>
<td>82 - 86 kg</td>
<td>86 psi</td>
<td>80 psi</td>
</tr>
<tr>
<td>86 - 91 kg</td>
<td>91 psi</td>
<td>85 psi</td>
</tr>
<tr>
<td>91 - 95 kg</td>
<td>96 psi</td>
<td>89 psi</td>
</tr>
<tr>
<td>95 - 100 kg</td>
<td>100 psi</td>
<td>93 psi</td>
</tr>
<tr>
<td>100 - 104 kg</td>
<td>105 psi</td>
<td>97 psi</td>
</tr>
<tr>
<td>104 - 109 kg</td>
<td>110 psi</td>
<td>102 psi</td>
</tr>
<tr>
<td>109 - 113 kg</td>
<td>114 psi</td>
<td>106 psi</td>
</tr>
<tr>
<td>Max. pressure</td>
<td>120 psi (8.3 bar)</td>
<td>120 psi (8.3 bar)</td>
</tr>
</tbody>
</table>

Table 26: Filling pressure table of the FOX air fork
Before the first ride

- Measure the distance between the crown and the dust wiper of the fork. This distance is the "total deflection of the fork."

- Push the O-ring downward against the dust wiper of the fork. If an O-ring is not available, attach a cable tie to the stanchion temporarily.

- Put on your usual bicycling clothing, including luggage.

- Sit on the bicycle in your usual riding position and support yourself (e.g. against a wall or tree).

- Get off the bicycle without allowing it to deflect.

- Measure the distance between the dust wiper and the O-ring or cable tie. This dimension is the "SAG." The recommended "SAG" value is between 15% (hard) and 20% (soft) of the "total fork deflection."

- Increase or reduce the air pressure until you have reached the desired "SAG."

- Once the "SAG" is correct, re-tighten the blue air cover cap clockwise.

If you cannot achieve the desired "SAG", you may need to make an internal adjustment. For this purpose, contact your specialist dealer.
Before the first ride

6.5.2 Adjusting the rebound

The rebound defines the speed at which the fork rebounds after being loaded. The rebound setting depends on the air pressure setting. Higher "SAG" settings require lower rebound settings.

▼ Turn the rebound adjuster clockwise to the closed position until it stops.

Figure 52: FOX rebound adjuster (1) on the fork

▼ Turn the rebound adjuster anti-clockwise.

◇ Adjust the rebound in such a way that the fork rebounds quickly, but without bottoming out upward during testing. Bottoming out is where the fork rebounds too quickly and stops moving abruptly once it has reached the full rebound distance. You will hear and feel a slight knock when this occurs.
6.6 Adjusting the Suntour rear frame damper

6.6.1 Adjusting the negative deflection

If the air pressure in the rear frame damper is exceeded or undershot, the damper can be permanently damaged.

Do not exceed the maximum air pressure of 300 psi (20 bar).

Negative deflection (SAG) is compression of the rear frame damper caused by the weight of the rider and their gear (e.g. a backpack), the sitting position and the frame geometry. This "SAG" is not caused by riding. Each rider has a different weight and sitting position. "SAG" depends on the rider's position and weight and should be between 25% and 30% of the maximum rear frame damper deflection, depending on bicycle usage and preferences.

▸ Set the compression adjuster to the OPEN position so that the SAG setting is not affected.

▸ Remove the cap on the air valve.

▸ Attach a high-pressure damper pump to the valve.

▸ Adjust the air pressure of the damper so that it corresponds to your weight.

▸ Remove the high-pressure pump.

▸ Measure the distance between the rubber air chamber seal and the end of the damper. This distance is the "total damper deflection".

▸ Put on your usual bicycling clothing, including luggage. Sit on the bicycle in your usual riding position and support yourself, e.g. against a wall or tree.
Before the first ride

- Push the O-ring downward against the rubber air chamber seal.
- Get off the bicycle without allowing it to deflect.
- Measure the distance between the rubber air chamber seal and the O-ring. This dimension is the "SAG." The recommended "SAG" value is between 15% (hard) and 25% (soft) of the "total damper deflection."
- Increase or reduce the air pressure until you have reached the desired "SAG."

6.6.2 Adjusting the rebound

The rebound defines the speed at which the rear frame damper rebounds after being loaded. The rebound setting depends on the air pressure setting. Higher "SAG" settings require lower rebound settings.

![Figure 53: Suntour rebound adjuster wheel (1) on the rear frame damper](image)

- Turn the rebound adjuster wheel in the – direction to increase rebounding.
- Turn the rebound adjuster wheel in the + direction to reduce compressive deflection movements.
6.6.3 Setting the compression

The compression damper setting of the rear frame damper makes it possible to set the damper according to the conditions of the ground. The compression damper setting specifies the speed at which the rear frame damper deflects after being loaded.

Figure 54: Suntour compression adjuster wheel (1) on the rear frame damper

- Turn the rebound adjuster wheel in the – direction to increase rebounding.
- Turn the rebound adjuster wheel in the + direction to reduce compressive deflection movements.
Before the first ride

6.7 Adjusting the FOX rear frame damper

6.7.1 Adjusting the negative deflection

If the air pressure in the rear frame damper is exceeded or undershot, the damper can be permanently damaged.

Do not exceed the maximum air pressure of 350 psi (24.1 bar). The minimum air suspension pressure of 50 psi (3.4 bar) must be complied with.

Negative deflection (SAG) is compression of the rear frame damper caused by the weight of the rider and their gear (e.g. a backpack), the sitting position and the frame geometry. This "SAG" is not caused by riding. Each rider has a different weight and sitting position. "SAG" depends on the rider's position and weight and should be between 25% and 30% of the maximum rear frame damper deflection, depending on bicycle usage and preferences.

▶ Set the compression adjuster to the OPEN position.

▶ Adjust the air pressure of the damper so that it corresponds to your weight.

▶ Attach the high-pressure pump to the damper. Slowly compress the damper over 25% of the deflection 10 times until you have reached the desired pressure. This equalises the air pressure between the positive and negative air chambers, and the pressure indication on the pump manometer changes accordingly.

Remove the high-pressure pump.
Before the first ride

Figure 55: FOX rear frame damper: The negative deflection (2) is the distance between the O-ring (4) and the rubber air chamber seal (1). The total deflection of the rear frame damper (5) is the distance between the end of the rear frame damper (3) and the rubber air chamber seal (1).

- Measure the distance between the rubber air chamber seal (1) and the end of the damper (3). This distance is the "total damper deflection" (5).
- Put on your usual bicycling clothing, including luggage. Sit on the bicycle in your usual riding position and support yourself, e.g. against a wall or tree.
- Push the O-ring (4) downward against the rubber air chamber seal (1).
- Get off the bicycle without allowing it to deflect.
- Measure the distance between the rubber air chamber seal and the O-ring. This dimension is the "SAG." The recommended "SAG" value is between 25% (hard) and 30% (soft) of the "total damper deflection" (5).
- Increase or reduce the air pressure until you have reached the desired "SAG."
6.7.2 Adjusting the rebound

The rebound defines the speed at which the rear frame damper rebounds after being loaded. The rebound setting depends on the air pressure setting. Higher "SAG" settings require lower rebound settings.

Figure 56: FOX rebound adjuster (1) on the rear frame damper

- Turn the rebound adjuster clockwise to the closed position until it stops.
- Determine your rebound setting based on the air pressure. Turn the rebound adjuster back anti-clockwise by the number of clicks specified in the table below:
Before the first ride

6.8 Retracting brake linings

New brake linings take time to break in and adjust to their final braking force.

► Accelerate bicycle to about 16 mph.
► Brake bicycle until it comes to a halt.
► Repeat process 30–50 times.
► The brake linings and brake discs are now broken in and provide optimal braking power.

<table>
<thead>
<tr>
<th>Air pressure (psi)</th>
<th>Recommended rebound setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>Open (anti-clockwise)</td>
</tr>
<tr>
<td>100 - 120</td>
<td>11</td>
</tr>
<tr>
<td>120 - 140</td>
<td>10</td>
</tr>
<tr>
<td>140 - 160</td>
<td>9</td>
</tr>
<tr>
<td>160 - 180</td>
<td>8</td>
</tr>
<tr>
<td>180 - 200</td>
<td>7</td>
</tr>
<tr>
<td>200 - 220</td>
<td>6</td>
</tr>
<tr>
<td>220 - 240</td>
<td>5</td>
</tr>
<tr>
<td>240 - 260</td>
<td>4</td>
</tr>
<tr>
<td>260 - 280</td>
<td>3</td>
</tr>
<tr>
<td>280 - 300</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 27: Filling pressure table of the FOX air fork
7 Operation

Crash caused by loose clothing

CAUTION

Laces, scarves and other loose items may become entangled in the spokes on the wheels and the chain drive. This may cause you to fall from the bicycle and injure yourself.

- Wear sturdy footwear and close-fitting clothing.

Crash caused by soiling

CAUTION

Heavy soiling can impair the functions of the bicycle, for example, the function of the brakes. This may cause you to fall from the bicycle and injure yourself.

- Remove coarse soiling before riding.

Crash caused by poor road conditions

CAUTION

Loose objects, such as branches and twigs, may become caught in the wheels and cause a crash with injuries.

- Be aware of the road conditions.
- Ride slowly and brake in good time.

NOTICE

When riding downhill, high speeds may be reached. The bicycle is only engineered for exceeding a speed of 20 mph (class-1) or 28 mph (class-3) briefly. In particular the tyres can fail if exposed to a continuous load.

- Decelerate the bicycle with the brakes if higher speeds than 20 mph (class-1), or 28 mph (class-3), are reached.

NOTICE

Heat or direct sunlight can cause the tire pressure to increase above the permitted maximum pressure. This can destroy the tyres.

- Never park the bicycle in the sun.
- On hot days, regularly check the tire pressure and adjust it as necessary.
Operation

You can be ride the bicycle within a temperature range between 41 °F and 95 °F. The effectiveness of the drive system is restricted outside of this temperature range.

Operation temperature

| 41°F–95 °F |

Moisture penetrating at low temperatures may impair individual bicycle functions due to the open structural design.

- Always keep the bicycle dry and free from frost.

- If the bicycle is to be used at temperatures below 38 °F, the specialist dealer must carry out an inspection and prepare the bicycle for winter usage first.

Off-road riding subjects the joints in the arms to severe strain. Take a break from riding every 30 to 90 minutes, depending on the condition of the roads.
7.1 Before each ride

Crash caused by difficult-to-spot damage

If the bicycle topples over or you have a fall or an accident, there may be difficult-to-spot damage to components such as the brake system, quick releases or frame. This may cause you to fall from the bicycle and injure yourself.

► Take the bicycle out of service and have a specialist dealer carry out an inspection.

Crash caused by material fatigue

Intensive use can cause material fatigue. A component may suddenly fail in case of material fatigue. This may cause you to fall from the bicycle and injure yourself.

► Remove the bicycle from service immediately in case of any signs of material fatigue. Have the specialist dealer check the state.

► Have the specialist dealer carry out a basic inspection regularly. During the inspection, the specialist dealer inspects the bicycle for any signs of material fatigue on the frame, fork, suspension element mountings (if there are any) and components made of composite materials.

Carbon becomes brittle when exposed to heat radiation such as heating. This can cause the carbon part to break and result in a crash with injuries.

► Never expose carbon parts to strong heat sources.
7.2 Check list before each ride

- Check the bicycle before each ride.
- Do not use the bicycle if there are any anomalies.

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check that the bicycle is complete.</td>
<td></td>
</tr>
<tr>
<td>Check that the lighting, reflector and brake, for instance, are sufficiently clean.</td>
<td></td>
</tr>
<tr>
<td>You must check that the mudguards, the pannier rack and the chain guard are securely installed.</td>
<td></td>
</tr>
<tr>
<td>Check that the front and rear wheels run true. This is particularly important if the bicycle has been transported or secured with a lock.</td>
<td></td>
</tr>
<tr>
<td>Check the valves and the tire pressure. Adjust as necessary before each ride.</td>
<td></td>
</tr>
<tr>
<td>If the bicycle has a hydraulic rim brake, check whether the locking levers are fully closed in their final positions.</td>
<td></td>
</tr>
<tr>
<td>Check the front and rear wheel brakes to make sure that they are working properly. To do so, operate the brake levers while stationary in order to check whether resistance is generated in the usual brake lever position. The brake must not lose any brake fluid.</td>
<td></td>
</tr>
<tr>
<td>Check that the driving light is working.</td>
<td></td>
</tr>
<tr>
<td>Check for unusual noises, vibrations, smells, staining, deformation, cracks, scores, abrasion and wear. This indicates material fatigue.</td>
<td></td>
</tr>
<tr>
<td>Inspect suspension system for cracks, dents, bumps, parts or leaking oil. Look at concealed sections on the bicycle’s lower surfaces.</td>
<td></td>
</tr>
<tr>
<td>Use body weight to compress suspension system. Adjust to the optimum "SAG" value if suspension is too soft.</td>
<td></td>
</tr>
<tr>
<td>If quick releases are used check them to make sure that they are fully closed in their end position. If quick release axle systems are used, make sure that all attachment screws are tightened to the correct torque.</td>
<td></td>
</tr>
<tr>
<td>Be alert to any unusual operating sensations when braking, pedalling or steering.</td>
<td></td>
</tr>
</tbody>
</table>
7.3 Using the kickstand

Crash caused by a lowered kickstand

The kickstand does not fold up automatically. There is a risk of crashing if riding with the kickstand lowered.

- Raise the kickstand completely before the ride.

The heavy weight of the bicycle may cause the kickstand to sink into soft ground and the bicycle may topple and crash over.

- The bicycle must be parked on firm, level ground only.

- It is particularly important to check that the bicycle is stable if it is equipped with accessories or loaded with luggage.

Raising the kickstand

- Before the ride, raise the kickstand completely with your foot.

Parking the bicycle

- Before parking, lower the kickstand completely with your foot.

- Park the bicycle carefully and check that it is stable.
7.4 Using the pannier rack

Crash caused by loaded pannier rack

The riding performance of the bicycle changes with a loaded pannier rack, in particular when steering and braking. This can lead to a loss of control. This may cause you to fall from the bicycle and injure yourself.

➤ You should practice how to use a loaded pannier rack safely and reliably before using the bicycle in public spaces.

Crash caused by unsecured luggage

Loose or unsecured objects on the pannier rack, e.g. belts, may become caught in the rear wheel. This may cause you to fall from the bicycle and injure yourself.

Objects which are fastened to the pannier rack may cover the bicycle's reflectors and the driving light. The bicycle may be overseen on public roads. This may cause you to fall from the bicycle and injure yourself.

➤ Secure any objects which are attached to the pannier rack sufficiently.

➤ Objects fastened to the pannier rack must never cover the reflectors, the headlight or the rear light.

Crushing the fingers in the spring flap

The spring flap on the pannier rack operates with a high clamping force. There is a risk of crushing the fingers.

➤ Never allow the spring flap to snap shut in an uncontrolled manner.

➤ Be careful where you position your fingers when closing the spring flap.
The maximum load bearing capacity is indicated on the pannier rack.

- Never exceed the permitted total weight when packing the bicycle.
- Never exceed the maximum load bearing capacity of the pannier rack.
- Never modify the pannier rack.

- Distribute the luggage as evenly as possible on the left and right-hand side of the bicycle.
- We recommend the use of panniers and luggage baskets.
7.5 Rechargeable battery

Fire and explosion due to defective battery

The safety electronics on damaged or faulty batteries may fail. The residual voltage can cause a short circuit. The batteries may self-ignite and explode.

- Remove batteries with external damage from service immediately and never charge them.

- If the battery becomes deformed or begins to smoke, keep at a safe distance, disconnect the power supply at the socket, and notify the fire service immediately.

- Never extinguish damaged batteries with water or allow them to come into contact with water.

- If a battery is dropped or struck but shows no signs of external damage, remove the battery from service and observe it for at least 24 hours.

- Faulty batteries are hazardous goods. Dispose of faulty batteries properly and as quickly as possible.

- Store in a dry place until disposal. Never store in the vicinity of flammable substances.

- Never open or repair the battery.

Risk of fire and explosion due to high temperatures

Excessively high temperatures damage the battery. The battery may self-ignite and explode.

- Protect battery against heat

- Never expose the battery to sustained direct sunlight.
Fire and explosion caused by short circuit

Small metal objects may jumper the electrical connections of the battery. The batteries may self-ignite and explode.

- Keep paper clips, screws, coins, keys and other small parts away from the battery and do not insert them into the battery.

Chemical burns to the skin and eyes caused by faulty battery

Liquids and vapours may leak from damaged or faulty batteries. They can irritate the airways and cause burns.

- Avoid contact with leaked liquids.
- Ventilate with fresh air and consult a doctor if you suffer any pain or discomfort.
- Immediately consult a doctor in case of contact with the eyes or any discomfort.
- In case of contact with the skin, rinse off immediately with water.
- Ventilate the room well.

Fire and explosion caused by incorrect charger

Batteries which are charged with an unsuitable charger, may become internally damaged. This may result in fire or an explosion.

- Only ever use the battery with the supplied charger.
- Mark the supplied charger and these operating instructions clearly to prevent mix-ups – with the bicycle frame number or type number, for example.
7.5.1 Down tube/seat tube battery

Alternative

Before the battery is to be removed or inserted, switch off the battery and the drive system.

7.5.1.1 Removing the down tube/seat tube battery

1. Open the battery lock with the key.
2. Tip the down tube battery out of the top mount.

Fire and explosion caused by penetration by water

The battery is only protected from simple spray water. Penetration by water can cause a short circuit. The battery may self-ignite and explode.

- Never immerse the battery in water.
- If there is reason to believe that water may enter into the battery, the battery must be removed from service.
- If a key is left inserted when transporting the bicycle, or when riding, it may break off or the compartment may open accidentally.
- Remove the key from the battery lock immediately after use.
- We recommend that you attach the key to a key ring.

NOTICE

If a key is left inserted when transporting the bicycle, or when riding, it may break off or the compartment may open accidentally.

7.5.1 Down tube/seat tube battery

Alternative

✔ Before the battery is to be removed or inserted, switch off the battery and the drive system.

7.5.1.1 Removing the down tube/seat tube battery

- (1) Open the battery lock with the key.
- Tip the down tube battery out of the top mount.
- (2) Pull the down tube battery out of the lower mount.
7.5.1.2 Inserting the down tube/seat tube battery

Figure 57: Removing and inserting the down tube battery

1. (3) Place the down tube battery on the contacts in the lower mount.
2. (4) Remove the key from the lock.
3. Tip the battery into the top mount as far as it will go. There is an audible clicking noise.
4. Check the inserted battery to make sure it is firmly in place.
7.5.2 Integrated battery

Alternative

- Before the battery is to be removed or inserted, switch off the battery and the drive system.

7.5.2.1 Removing the integrated battery

![Removing the integrated battery](image)

Figure 58: Removing the integrated battery

- (1) Open the battery lock with the key.
- (2) The integrated battery is released and falls into the retainer guard.
- (3) Hold the battery in your hand from below. Use the other hand to push on the retainer guard from above.
- (4) The integrated battery is fully released and will fall into your hand.
- Pull the integrated battery out of the frame.
- Remove the key from the lock.
7.5.2.2 Inserting the integrated battery

1. Place the battery with the contacts first into the lower mount.
2. Tilt the integrated battery up, so that it is held by the retainer guard.
3. Push the integrated battery upwards, so that you hear it click into place.
4. Check the inserted battery to make sure it is firmly in place.
5. Lock the battery with the key; otherwise, the battery may fall out of the mount when you open the lock.
6. Remove the key from the lock.
7.5.3 Charging the battery

Risk of fire and explosion due to faulty battery

The safety electronics on damaged or faulty batteries may fail. The residual voltage can cause a short circuit. The batteries may self-ignite and explode.

► Never charge a defective battery.

Fire caused by overheated charger

The charger heats up when charging the battery. In case of insufficient cooling, this can result in fire or burns to the hands.

► Never use the charger on a highly flammable surface (e.g. paper, carpet etc.).

► Never cover the charger during the charging process.

► Never charge the battery unattended.

Electric shock caused by penetration by water

If water penetrates into the charger, there is a risk of electric shock.

► Never charge the battery outdoors.

Electric shock in case of damage

Damaged chargers, cables and plug connectors increase the risk of electric shock.

► Check the charger, cable and plug connector before each use. Never use a damaged charger.

► If an error occurs during the charging process, a system message is displayed. Remove the charger and the battery from operation immediately and follow the instructions.
Operation

✓ The ambient temperature during the charging process must be within the range from 32 °F to 104 °F.

✓ The battery can remain on the bicycle or be removed for charging.

✓ Interrupting the charging process does not damage the battery.

✓ On a bicycle which is equipped with two batteries, the charging process for both batteries is started from the pannier rack battery.

► Remove the rubber cover from the battery.

► Connect the mains plug of the charger to a normal domestic, grounded socket.

Connection data 230 V, 50 Hz

► Connect the charging cable to the battery's charging port.

✓ The charging process starts automatically.

 NOTIFY During the charging process the operating and charge status indicator indicates the charge status. When the drive system is switched on, the display shows the charging process.

► If the battery is outside its charging temperature range, three LEDs will flash on the charge level indicator.

✓ Disconnect the battery from the charger and allow it to cool down. Do not connect the battery to the charger again until the permitted charging temperature has been reached.

 NOTIFY The charging process is complete when the LEDs of the operating and charge status indicator go out.

► Once charging is complete, disconnect the battery from the charger and the charger from the mains.
7.5.4 Charging the dual battery

Alternative

WARNING

Risk of fire and explosion due to faulty battery
The safety electronics on damaged or faulty batteries may fail. The residual voltage can cause a short circuit. The batteries may self-ignite and explode.

► Never charge a defective battery.

CAUTION

Fire caused by overheated charger
The charger heats up when charging the battery. In case of insufficient cooling, this can result in fire or burns to the hands.

► Never use the charger on a highly flammable surface (e.g. paper, carpet etc.).

► Never cover the charger during the charging process.

► Never charge the battery unattended.

CAUTION

Electric shock caused by penetration by water
If water penetrates into the charger, there is a risk of electric shock.

► Never charge the battery outdoors.

CAUTION

Electric shock in case of damage
Damaged chargers, cables and plug connectors increase the risk of electric shock.

► Check the charger, cable and plug connector before each use. Never use a damaged charger.

NOTICE

► If an error occurs during the charging process, a system message is displayed. Remove the charger and the battery from operation immediately and follow the instructions.
One of the charging sockets is not accessible or is closed with an end cap on bicycles with two batteries.

► Charge the batteries using the accessible charging socket only.

► Never open a closed charging socket. Charging via a pre-closed charging socket can cause irreparable damage.

► If you wish to use just one battery on a bicycle which is designed for two batteries, cover the contacts on the free slot with the supplied cover cap. Otherwise, there is a risk of a short circuit caused by the open contacts.

7.5.4.1 Charging process when two batteries are used

► If two batteries are attached to a bicycle, charge the two batteries via the non-closed socket.

⇒ The two batteries are charged alternately during the charging process. Charging switches automatically between the two batteries several times. The charging time is twice as long.

The two batteries are discharged alternately during use.

7.5.4.2 Charging process when one battery is used

If you remove the batteries out of their mounts, you can charge each battery individually.

If only one battery is used, you will only be able to charge the battery on the bicycle which has an accessible charging socket. You can only charge the battery with the closed charging socket if you remove it from its mount.
7.5.5 Waking the battery

✓ When not used for a longer period, the battery switches to sleep mode to self-protect. The LEDs of the operating and charge status indicator do not light up.

► Press the On-Off button (battery).

⇒ The battery’s operating and charge status indicator indicates the charge status.
Operation

7.6 Electric drive system

7.6.1 Switching on the drive system

Crash caused by lack of readiness for braking

When it is switched on, the drive system can be activated by the application of force on the pedals. There is a risk of a crash if the drive is activated unintentionally, and the brake is not reached.

- **Never start the electric drive system, or switch it off immediately, if the brake cannot be reached safely and reliably.**

- A sufficiently charged battery has been inserted on the bicycle.
- The *display* has been inserted correctly into the mount.
- The battery is firmly in place. The key has been removed.

There are three options for switching on the drive system.

1 **Battery On-Off button**
 - Press the *On-Off button (battery)* once.

2 **Display On-Off button**
 - Press the *On-Off button (display)* once.

3 **Switched-on display**
 - If the display is already switched on when it is inserted into its mount, the electric drive system is switched on automatically.

- After switching on, a speed of 0 mph is displayed on the *display*. If this is not the case, you must check whether the *display* has been engaged properly in place.
Operation

- If the drive system is switched on, the drive is activated as soon as the pedals are moved with sufficient force (except if in push assist mode or the level of assistance is "OFF").

- The motor power is determined by the level of assistance set on the display.

- As soon as the system has been activated, ACTIVE LINE/PERFORMANCE LINE appears briefly on the display.

7.6.2 Switching off the drive system

As soon as you stop pushing the pedals in normal mode or reach a speed of 20 mph (class-1), or 28 mph (class-3), the drive system switches off the assistance system. The assistance system starts up again if you push the pedals and your speed is less than 20 mph (class-1), or 28 mph (class-3).

The system switches off automatically ten minutes after the last command. There are three options for switching off the drive system manually.

1 Display On-Off key
 - Press the On-Off button (display) once.

2 Battery On-Off key
 - Press the On-Off button (battery).

3 Removing the display
 - Remove the display from the mount.

- The LEDs of the operating and charge status indicator go out.
7.7 Display

Crash caused by distraction

A lack of concentration while riding increases the risk of an accident. This may cause a crash with serious injuries as a consequence.

➤ Never allow yourself to be distracted by the display.

➤ Stop bicycle if you want to make inputs on the display other than a change in level of assistance. Only enter data when the bicycle is stationary.

➤ Do not use the display as a handle. You may irreparably damage the display if you use it to lift the bicycle.

➤ If you do not use your bicycle for several weeks, remove the display from its bracket. Store the display safely at room temperature in a dry environment.

The display battery discharges when it is not in use. This can cause irreparable damage to the display battery.

➤ Recharge the display battery for at least 1 hour every 3 months.
7.7.1 Charging the display battery

You can recharge the display battery either on the bicycle or via the USB port.

7.7.1.1 Charging the display battery on bicycle

NOTICE
The display will only charge when switched on.

- Switch the display on.

✓ Note that the drive system will switch off automatically after ten minutes if not activated if you do not charge the bicycle battery immediately. The display battery will also stop recharging in such a case.

- Position the display in its mount.

⇒ The charging process starts automatically.

7.7.1.2 Charging the display battery via the USB port

NOTICE
The display will only charge when switched on.

- Switch the display on.

If the display is switched off during recharging with a USB cable, the display cannot be switched on again until the USB cable has been disconnected.

- Open the USB protective flap.

- Connect a standard USB charger (not included in the standard scope of delivery) or the USB port on a computer (5 V charge voltage; max. 500 mA charging current) to the display USB port using a micro USB cable.

⇒ The charging process starts automatically.
Operation

7.7.2 Storage mode

The display features a power-saving storage mode, which minimises discharge from the display battery. The date and time are eliminated during storage mode.

7.7.2.1 Activating the storage mode

The display will no longer start up when you press the on-off button (display) once when in storage mode.

▼ Keep the on-off button (display) pressed down for at least 8 seconds.

✓ Storage mode is activated.

7.7.2.2 Deactivating the storage mode

▼ Press the on-off button (display) for at least 2 seconds.

✓ Storage mode is deactivated.

7.7.3 Removing and attaching the display

If the rider is not present, the display can be used without authorisation, e.g. it may be stolen, the system settings may be changed or journey information may be read.

▼ Remove the display when the bicycle is parked.
Operation

7.7.3.1 Removing the display

- Take hold of the display at its top end.
- Pull the display forwards away from the contacts to the drive unit until it is released from its magnetic mount.

The system is switched off by removing the display.

![Diagram of display removal](image)

Figure 60: Pull the display (2) out of its mount (1) away from the contacts with the display blocking screw (3)

7.7.3.2 Inserting the display

- Place the display lower section onto the mount.
- Fold the display gently forwards until it is clearly fastened into the magnetic mount.

The display can be secured with a securing strap (available as an option) to prevent it from falling out of its mount in the event of a crash.
7.7.3.3 Securing the display

The blocking screw does not offer protection against theft.

- Position the display in its mount.
- Fasten the blocking screw (M3, 6 mm in length) into the designated thread in the display from below.

NOTICE
You may damage the display if you use a longer screw.

7.7.4 Using the USB port

A USB connection is not a waterproof plug connection. Any moisture which enters through the USB port may trigger a short circuit in the display.

- Never connect an external device when cycling in the rain.
- Always close the protective flap on the USB port when cycling in the rain.
- Regularly check the position of the rubber cover on the USB port and adjust it as necessary.

NOTICE
Connected electrical loads may have an adverse effect on the bicycle.

The USB port can be used to operate external devices which can be connected using a standard micro A/micro B USB 2.0 cable.
Operation

✓ The display and sufficiently charged battery must be in place on the bicycle to use the USB port.

► Open protective flap on the USB port on the display.

► Connect the external device USB port with the USB port on the on-board computer using a micro A–micro B USB charging cable.

► Replace the protective flap after using the USB port.

7.7.5 Switching on the display

► Press the On-Off button (display) once.

⇒ The electric drive system is switched on.

7.7.6 Switching off the display

If the display is not inserted into the bracket, it will switch off automatically after one minute to save energy if no button is pressed.

► Press the On-Off button (display) once.

⇒ The electric drive system is switched off.
7.7.7 Using the push assist system

Injury from pedals or wheels

The pedals and the drive wheel turn when the push assist system is used. There is a risk of injury if the bicycle wheels are not in contact with the ground when the push assist system is used (e.g. when carrying the bicycle up stairs or when loading a bike rack).

- Only use the push assist mode when pushing the bicycle.
- You must steer the bicycle securely with both hands when using push assist.
- Allow for enough freedom of movement for the pedals.

The push assist helps the rider to push the bicycle. The speed can be a maximum of 3.7 mph in this case. The tractive power of the push assist and its speed can be influenced by the selection of gear. To spare the drive, first gear is recommended for travelling uphill.

- The level of assistance OFF must not be selected.
- Press the push assist button once to activate the push assist.
- Press and hold down the plus button on the control panel within 3 seconds to switch on the push assist.
- Release the plus button on the control panel to shut off the push assist. The push assist system also switches off automatically as soon as the bicycle wheels are blocked or the speed exceeds 3.7 mph.
7.7.8 Using the driving light

✓ The drive system needs to be already switched on to turn on the *driving light*.

▶ Press the **driving light button** on the display.

▷ The front light and rear light are both switched on (*driving light symbol* is displayed) or switched off (*driving light symbol* is not displayed) at the same time.

7.7.9 Selecting the level of assistance

You can adjust how strongly the electric drive should assist you on the control panel when pedalling. You can change the level of assistance at any time, even when you are cycling.

▶ Press the **plus button** on the control panel to increase the level of assistance.

▶ Press the **minus button** on the control panel to reduce the level of assistance.

▷ The motor power used appears on the screen. The maximum motor power depends on the selected level for assistance.

If the on-board computer is removed from its mount (5), the last displayed level of assistance is saved.

7.7.10 Operating the display

All user interface screens and texts on the following pages correspond to the software’s release version. This means that there may be slight changes to user interface screens and texts if there are several updates to the software during a year.
The display is operated using five buttons on the control panel.

![Control Panel Diagram]

Figure 61: Overview of the control panel

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select button</td>
</tr>
<tr>
<td>2</td>
<td>< Browse backwards button</td>
</tr>
<tr>
<td>3</td>
<td>> Browse forwards button</td>
</tr>
<tr>
<td>4</td>
<td>+ Plus button</td>
</tr>
<tr>
<td>5</td>
<td>– Push assist button</td>
</tr>
<tr>
<td>6</td>
<td>– Minus button</td>
</tr>
</tbody>
</table>

Table 28: Overview of the control panel

You can use the **browse backwards button** (2) and the **browse forwards button** (3) to access the different user interfaces with information on riding values even when riding. This means both hands can remain on the handlebars while you are cycling.

You can use the **plus button** (4) and the **minus button** (6) to increase or decrease the levels of assistance. If you are accessing a list (such as the SETTINGS menu), you can use the buttons to scroll up and down the list.
Operation

You can use the select button (1) to perform the following functions:
- Gain access to the QUICK MENU while riding.
- Open the SETTINGS MENU in the STATUS SCREEN while the bicycle is stationary.
- Confirm values and accept information notifications.
- Exit a dialogue.

7.7.11 Opening the start screen
► Insert the display into its mount.
⇒ The START SCREEN will open.

7.7.12 Opening the status screen
► Open the START SCREEN.
► Press the browse backwards button.
⇒ The STATUS SCREEN will open.

7.7.13 Opening the settings
► Open the STATUS SCREEN.
► Select SETTINGS in the lower section.
► Press the select button.
⇒ The SETTINGS will open.

7.7.14 Changing the settings
You will find a detailed description of the individual parameters in the online operating instructions at: www.Bosch-eBike.com/Kiox-manual.
Operation

7.7.15 Opening the Quick Menu

You can use the QUICK MENU to display selected settings which can also be adjusted while you are riding.

✓ You cannot access them from the STATUS SCREEN.

► Press the select button (1).

❖ The QUICK MENU will open.

You can make the following settings on the Quick Menu:

7.7.15.1 Resetting the journey data

► Open the QUICK MENU.

► Select Rest.

► Press the select button (1) to confirm.

► Enter the date.

❖ All data are reset to zero for the trip distance up until this point.

7.7.15.2 Adjusting the pedalling frequency or start gear

You can change either the pedalling frequency or the start gear, depending on the bicycle model. You can adjust the start gear in the SETTINGS at:

MY EBIKE → ESHIFT.
Operation

7.8 Gear shift

The selection of the appropriate gear is a prerequisite for a physically comfortable ride and making sure that the electric drive system functions properly. The ideal pedalling frequency is between 70 and 80 revolutions per minute.

► It is advisable to stop pedalling briefly when changing gears. This makes it easier to switch gears and reduces wear on the drivetrain.

7.8.1 Using the derailleur gears

Figure 62: Down shifter (1) and up shifter (2) on the left (I) and right (II) shift

► Select the appropriate gear with the shifter.
► The gear shift switches the gear.
► The shifter returns to its original position.
► Clean the rear derailleur if the gear change blocks.
Operation

7.9 Brake

Hydraulic fluid can be fatal if it is swallowed and penetrates into the respiratory system

Hydraulic fluid may leak out after an accident or due to material fatigue. Hydraulic fluid can be fatal if swallowed and inhaled.

First aid treatment

▶ Wear gloves and safety goggles as protective equipment. Keep unprotected persons away.

▶ Remove those affected from the danger area to fresh air. Never leave those affected unattended.

▶ Ensure sufficient ventilation.

▶ Immediately remove clothing items contaminated with hydraulic fluid.

▶ Serious slip hazard due to hydraulic fluid leakage.

▶ Keep away from naked flames, hot surfaces and sources of ignition.

▶ Avoid contact with skin and eyes.

▶ Do not inhale vapours or aerosols.

After inhalation

▶ Take in fresh air; consult doctor if any pain or discomfort.

After skin contact

▶ Wash affected skin with soap and water and rinse well. Remove contaminated clothing. Consult doctor if any pain or discomfort.
Operation

After contact with eyes

- Rinse eyes under flowing water for at least ten minutes with the lids open; also rinse under lids. Consult eye doctor if pain or discomfort continues.

After ingestion

- Rinse out mouth with water Never induce vomiting! Risk of aspiration!
- Place a person lying on their back who is vomiting in a stable recovery position on their side. Seek medical advice immediately.

Environmental protection measures

- Never allow hydraulic fluid to flow into the sewage system, surface water or groundwater.
- Notify the relevant authorities if fluid penetrates the ground or pollutes water bodies or the sewage system.

Amputation due to rotating brake disc

WARNING

The brake disc in disc brakes is so sharp that it can cause serious injuries to fingers if they are inserted into the disc brake openings.

- Always keep fingers well away from the rotating brake disc.
Operation

Crash caused by brake failure

WARNING

Oil or lubricant on the brake disc in a disc brake or on the rim of a rim brake can cause the brake to fail completely. This may cause a crash with serious injuries as a consequence.

- Never allow oil or lubricant to come into contact with the brake disc or brake linings or on the rim of a rim brake.

- If the brake linings have come into contact with oil or lubricant, contact a dealer or a workshop to have the components cleaned or replaced.

If the brakes are applied continuously for a long time (e.g. while riding downhill for a long time), the fluid in the brake system may heat up. This may create a vapour bubble. This will cause air bubbles or any water contained in the brake system to expand. This may suddenly make the lever travel wider. This may cause a crash with serious injuries.

- Release the brake regularly when riding downhill for a longer period of time.

Crash caused by wet conditions

CAUTION

The tyres may slip on wet roads. In wet conditions you must also expect a longer braking distance. The braking sensation differs from the usual sensation. This can cause loss of control or a crash, which may result in injuries.

- Ride slowly and brake in good time.
Operation

Crash caused by incorrect use
Handling the brake improperly can lead to loss of control or crashes, which may result in injuries.

- Shift your body weight back and down as far as possible.
- Practise braking and emergency braking before the bicycle is used in public spaces.
- Never use the bicycle if you can feel no resistance when pulling on the brake handle. Consult a specialist dealer.

Crash after cleaning or storage
The brake system is not designed for use on a bicycle which is placed on its side or turned upside down. The brake may not function correctly as a result. This can cause a crash, which may result in injuries.

- If the bicycle is placed on its side or turned upside down, apply the brake a couple of times before setting off to ensure that it functions normally.
- Never use the bicycle if it no longer brakes as normal. Consult a specialist dealer.

Burns caused by heated brake
The brakes may become very hot during operation. There is a risk of burns or fire in case of contact.

- Never touch the components of the brake directly after the ride.

The drive force of the motor is shut off during the ride as soon as the rider no longer pedals. The drive system does not switch off when braking.

- In order to achieve optimum braking results, do not pedal while braking.
7.9.1 Using the brake lever

Figure 63: Front (2) and rear (1) brake lever; Shimano brake used as an example

- Pull the left brake lever for the front wheel brake and the right lever for the rear wheel brake until the desired speed is reached.
7.10 Suspension and damping

7.10.1 Adjusting the compression of the Suntour fork

Alternative

The compression adjuster makes it possible to make quick adjustments to the suspension behaviour of the fork to suit changes in terrain. It is intended for adjustments made during the ride.

![Suntour compression adjuster with the OPEN (1) and LOCK (2) positions](image)

- Compression damping is lowest in the OPEN position, making the fork feel softer. Use the LOCK position if you want the fork to feel stiffer and you are riding on soft ground. The lever positions between the OPEN and LOCK positions enable fine adjustment of compression damping.

We recommend setting the lever of the compression adjuster to the OPEN position first.
7.10.2 Adjusting the compression of the Fox fork

Alternative

The compression adjuster makes it possible to make quick adjustments to the suspension behaviour of the fork to suit changes in terrain. It is intended for adjustments made during the ride.

![Figure 65: FOX compression adjuster with the OPEN (1) and HARD (2) positions](image)

- Compression damping is lowest in the OPEN position, making the fork feel softer. Use the HARD position if you want the fork feel stiffer and you are riding on soft ground. The lever positions between the OPEN and HARD positions enable fine adjustment of compression damping.

We recommend setting the lever of the compression adjuster to the OPEN mode position first.
7.10.3 Adjusting the compression of the Suntour damper

Alternative

The compression adjuster makes it possible to make quick adjustments to the suspension behaviour of the damper to suit changes in terrain. It should never be used while riding on rough terrain.

![Suntour compression adjuster open (1)](image)

- Use the OPEN position for rough descents and the LOCK position for efficient climbing. First set the compression adjuster to the OPEN position.

![Suntour compression adjuster closed (2)](image)
7.10.4 Adjusting the compression of the Fox damper

Alternative

The compression adjuster makes it possible to make quick adjustments to the suspension behaviour of the damper to suit changes in terrain. It is intended for adjustments made during the ride.

Figure 68: FOX compression adjuster on the rear frame damper with the OPEN (1), MEDIUM (2) and HARD (3) positions

- Use the OPEN position for rough descents, the MEDIUM position for uneven terrain and the HARD position for efficient climbing. First set the compression adjuster to the OPEN position.

Figure 69: Fine adjustment of the OPEN position is made using the adjuster (4)
Operation

The FOX rear frame damper features fine adjustment for the OPEN position.

✓ We recommend that fine adjustments be made when the compression adjuster is in the MEDIUM or HARD position.

➢ Pull out the adjuster.

➢ Turn the adjuster to position 1, 2 or 3. Setting 1 is for the softest riding performance, whereas 3 is for the hardest.

➢ Press the adjuster in to lock in the setting.
Maintenance

Cleaning check list

<table>
<thead>
<tr>
<th>Task</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean pedals</td>
<td>after each ride</td>
</tr>
<tr>
<td>Clean suspension fork and, if necessary, rear frame damper</td>
<td>after each ride</td>
</tr>
<tr>
<td>Clean the battery</td>
<td>once a month</td>
</tr>
<tr>
<td>Chain (mainly tarmacked road)</td>
<td>every 250–300 km</td>
</tr>
<tr>
<td>Basic cleaning and preservation of all components</td>
<td>at least every six months</td>
</tr>
<tr>
<td>Clean the charger</td>
<td>at least every six months</td>
</tr>
<tr>
<td>Clean and lubricate height-adjustable seat post</td>
<td>every six months</td>
</tr>
</tbody>
</table>

Maintenance check list

<table>
<thead>
<tr>
<th>Task</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check USB rubber cover position</td>
<td>before each ride</td>
</tr>
<tr>
<td>Check for tire wear</td>
<td>once a week</td>
</tr>
<tr>
<td>Check for rim wear</td>
<td>once a week</td>
</tr>
<tr>
<td>Check the tire pressure</td>
<td>once a week</td>
</tr>
<tr>
<td>Check brakes for wear</td>
<td>once a month</td>
</tr>
<tr>
<td>Check electrical cables and Bowden cables for damage and ensure they are fully functional</td>
<td>once a month</td>
</tr>
<tr>
<td>Check the chain tension</td>
<td>once a month</td>
</tr>
<tr>
<td>Check the tension of the spokes</td>
<td>every three months</td>
</tr>
<tr>
<td>Check the gear shift setting</td>
<td>every three months</td>
</tr>
<tr>
<td>Check suspension fork and, if necessary, rear frame damper for wear and ensure they are fully functional</td>
<td>every three months</td>
</tr>
<tr>
<td>Check for wear on brake discs</td>
<td>at least every six months</td>
</tr>
</tbody>
</table>
Service check list

<table>
<thead>
<tr>
<th>Task</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional check on the suspension fork</td>
<td>every 50 hours</td>
</tr>
<tr>
<td>Suspension fork maintenance and dismantling</td>
<td>every 100 hours or at least once a year</td>
</tr>
<tr>
<td>Complete maintenance of the rear frame damper</td>
<td>every 125 hours</td>
</tr>
<tr>
<td>Inspection by the specialist dealer</td>
<td>every six months</td>
</tr>
<tr>
<td>Inspection of the drive unit</td>
<td>15,000 km</td>
</tr>
</tbody>
</table>
8.1 Cleaning and servicing

Crash and falling caused by unintentional activation

There is a risk of injury if the drive system is activated unintentionally.

- Remove the battery before cleaning.

The following servicing measures must be performed regularly. Servicing can be performed by the operator and rider. In case of any doubt, consult the specialist dealer.

8.1.1 After each ride

8.1.1.1 Cleaning the suspension fork

- Remove dirt and deposits on the stanchions and deflector seals with a damp cloth.

- Check the stanchions for dents, scratches, staining or leaking oil.

- Check the air pressure.

- Lubricate the dust seals and stanchions.

8.1.1.2 Cleaning the rear frame damper

- Remove dirt and deposits from the damper body with a damp cloth.

- Check rear frame damper for dents, scratches, staining or leaking oil.

8.1.1.3 Cleaning the pedals

- Clean with a brush and soapy water after riding through dirt or rain.

☞ Service the pedals after cleaning.
8.1.2 Basic cleaning

Crash caused by brake failure

The braking effect may be unusually poor temporarily after cleaning, servicing or repairing the bicycle. This may cause you to fall from the bicycle and injure yourself.

- Never apply care products or oil to the brake discs or brake linings, or the braking surfaces on the rims.
- After cleaning, servicing or repair, carry out a few test brake applications.

NOTICE

Water may enter into the inside of the bearings if you use a steam jet. This dilutes the lubricant inside, the friction increases and, as a result, the bearings are permanently damaged in the long term.

- Never clean the bicycle with a steam jet.

NOTICE

Greased parts, such as the seat post, the handlebars or the stem, may no longer be safely and reliably clamped.

- Never apply grease or oil to clamping sections.

- Remove battery and display before basic cleaning.
8.1.2.1 **Cleaning the frame**

- Soak dirt stains on the frame with dish-washing detergent if the dirt is thick and ingrained.
- After leaving it to soak for a time, remove the dirt and mud with a sponge, brush and toothbrush.
- Use a watering can or your hand to rinse the frame to finish off.
- Service the frame after cleaning.

8.1.2.2 **Cleaning the stem**

- Clean stem with a cloth and washing water.
- Service the stem after cleaning.

8.1.2.3 **Cleaning the rear frame damper**

- Clean rear frame damper with a cloth and washing water.

8.1.2.4 **Cleaning the wheel**

Crash caused by braking hard on rim

A rim can break and block the wheel if you brake hard. It may cause a crash with serious injuries.

- Check rim wear on a regular basis.
- Check the tyres, rims, spokes and spoke nipples for any damage when cleaning the wheel.
- Use a sponge and a brush to clean the hub and spokes from the inside to the outside.
- Clean the rim with a sponge.
8.1.2.5 Cleaning the drive elements

- Spray the cassette, the chain wheels and the front derailleur with a degreasing agent.
- Clean coarse dirt with a brush after soaking for a short time.
- Wash down all parts with dish-washing detergent and a toothbrush.
- Service the drive elements after cleaning.

8.1.2.6 Cleaning the chain

NOTICE

- Never use aggressive (acid-based) cleaners, rust removers or degreasers when cleaning the chain.
- Do not use chain cleaning devices or chain cleaning baths.
- Slightly dampen a brush with dish-washing liquid. Brush both sides of the chain.
- Dampen a cloth with dish-washing liquid. Place the cloth on the chain.
- Hold with slight pressure while slowly turning the rear wheel, so the chain passes through the cloth.
- If the chain is still dirty afterwards, clean it with WD40.
- Service the chain after cleaning.
8.1.2.7 Cleaning the battery

CAUTION

Fire and explosion caused by penetration by water

The battery is only protected from simple spray water. Penetration by water can cause a short circuit. The battery may self-ignite and explode.

- Never clean the battery with a high-pressure water device, water jet or compressed air.
- Never immerse the battery in water.
- Never use cleaning agents.
- Remove the battery from the bicycle before cleaning.

- Clean the battery electrical connections with a dry cloth or brush only.
- Wipe off the decorative sides with a damp cloth.

8.1.2.8 Cleaning the drive unit

NOTICE

If water enters into the drive unit, the unit will be permanently damaged.

- Never immerse the drive unit in water.
- Never clean with a high-pressure water device, water jet or compressed air.
- Never use cleaning agents.
- Carefully clean the drive unit with a damp, soft cloth.
8.1.2.9 Cleaning the display

If water enters into the display, it will be permanently damaged.

- Never immerse the display in water.
- Never clean with a high-pressure water device, water jet or compressed air.
- Never use cleaning agents.
- Remove the display from the bicycle before cleaning.
- Carefully clean the display with a damp, soft cloth.

8.1.2.10 Cleaning the brake

Brake failure due to water penetration

The brake seals are unable to withstand high pressures. Damaged brakes can fail and cause an accident with injury.

- Never clean the bicycle with a high-pressure water device or compressed air.
- Take great care when using a hosepipe. Never point the water jet directly at the seal section.
- Clean brake and brake discs with a brush, water and dish-washing detergent.
- Clean brake discs thoroughly with brake cleaner or spirit.
8.1.3 Servicing

8.1.3.1 Servicing the frame

- Dry frame after cleaning
- Spray with care oil. Clean off the care oil again after a short time.

8.1.3.2 Servicing the stem

- Apply silicone or Teflon oil to the stem shaft tube and the quick release lever pivot point.
- If you have speedlifter Twist, also apply oil to the unlocking bolt using the groove in the speedlifter body.
- Apply a little acid-free lubricant grease between the stem quick release lever and the sliding piece to reduce the quick release lever operating force.

8.1.3.3 Servicing the fork

- Treat the dust seals with fork oil.

8.1.3.4 Servicing the drive elements

- Spray the cassette, the chain wheels and the front derailleur with a degreasing agent.
- Clean coarse dirt with a brush after soaking for a short time.
- Wash down all parts with dish-washing detergent and a toothbrush.

8.1.3.5 Servicing the pedal

- Treat with spray oil after cleaning.
8.1.3.6 Servicing the chain

- Grease the chain thoroughly with chain oil after cleaning.

8.1.3.7 Servicing the drive elements

- Service front and rear derailleur articulated shafts and jockey wheels with Teflon spray.
8.2 Maintenance

CAUTION
Crash and falling caused by unintentional activation
There is a risk of injury if the drive system is activated unintentionally.

- Remove the battery before maintenance.

The following maintenance measures must be carried out regularly [Check list, page 148]. They can be carried out by the operator and rider. In case of any doubt, consult the specialist dealer.

8.2.1 Wheel

WARNING
Crash caused by braking hard on rim
A rim can break and block the wheel if you brake hard. It may cause a crash with serious injuries.

- Check rim wear on a regular basis.

If the pressure is too low in the tire, the tire does not achieve its load bearing capacity. The tire is not stable and may come off the rim.

If the pressure in the tire is too high, the tire may burst.

- Check the tire pressure against the specifications
 Data sheet, page 1

- Adjust the tire pressure as necessary.

- Check the tire wear.
- Check the tire pressure.
- Check the rims for wear.

- The rims of a rim brake with invisible wear indicator are worn as soon as the wear indicator becomes visible in the area of the rim joint.
Maintenance

- The rims with visible wear indicator are worn as soon as the black, all-round groove on the pad friction surface is no longer visible. We recommend that you also replace the rims with every second brake lining replacement.

 ► Check the tension of the spokes.

8.2.2 Brake system

Crash caused by brake failure

Worn brake discs and brake linings, as well as a lack of hydraulic fluid in the brake cable, reduce the braking power. This may cause you to fall from the bicycle and injure yourself.

 ► Check the brake disc, brake linings and the hydraulic brake system on a regular basis and replace if necessary.

 ► Replace the brake linings on the disc brake when the pad thickness has reached 0.5 mm.

8.2.3 Electrical cables and brake cables

 ► Check all visible electrical cables and cables for damage. If, for example, the sheathing is compressed, the bicycle will need to be removed from service until the cables have been replaced.

 ► Check all electrical cables and cables to make sure they are fully functional.

8.2.4 Gear shift

 ► Check the gear shift and the shifter or the twist grip setting and adjust it as necessary.
8.2.5 Stem

- The stem and quick release system should be inspected at regular intervals. The specialist dealer should adjust them if necessary.

- If the hexagon socket head screw is also loosened, the headset backlash also needs to be adjusted. Medium-strength thread locker, such as Loctite blue, then needs to be applied to the loosened screws and the screws tightened as per the instructions.

- Check for wear and signs of corrosion (maintain with an oily cloth) and for oil leaks.

8.2.6 Checking the chain and belt tension

- The ideal chain or belt tension has been achieved if the chain or the belt can be pushed a maximum of 2 cm in the middle between the pinion and the toothed wheel. The crank must also turn without resistance.

NOTICE

- Excessive chain or belt tension increases wear.

If the chain or belt tension is too low, there is a risk that the chain or belt will slip off the chain wheels.

- Check the chain or belt tension once a month.

- Check the chain or belt tension in three or four positions, turning the crank a full revolution.

- If the chain or the belt can be pushed more than 2 cm, you need to have the chain or belt tensioned again by the specialist dealer.

- If the chain or belt can only be pushed up and down less than 1 cm, you will need to slacken the chain or belt slightly.

- The ideal chain or belt tension has been achieved if the chain or the belt can be pushed a maximum of 2 cm in the middle between the pinion and the toothed wheel. The crank must also turn without resistance.
8.2.7 USB port

Any moisture which enters through the USB port may trigger a short circuit in the display.

- Regularly check the position of the cover on the USB port and adjust it as necessary.

8.2.8 Suspension fork

- The specialist dealer will check the suspension fork function and the torques of attachment screws and nuts on the lower surfaces (steel: 10 Nm; alloy: 4 Nm). They will check the suspension fork for scratches, dents, cracks, stains, oil leaks or signs of wear or corrosion.
8.3 Service

Crash and falling caused by unintentional activation

There is a risk of injury if the drive system is activated unintentionally.

- Remove the battery before the service.

Crash caused by material fatigue

If the service life of a component has expired, the component may suddenly fail. This may cause you to fall from the bicycle and injure yourself.

- Have the specialist dealer carry out six-monthly basic cleaning of the bicycle, preferably at the same time as the required servicing work.

The specialist dealer must perform an inspection at least every six months. This is the only way to ensure that the bicycle remains safe and fully functional.

- The specialist dealer will inspect the bicycle for any signs of material fatigue during basic cleaning.
- The specialist dealer will check the software version of the drive system and update it. The electrical connections are checked, cleaned and preservative agent is applied. The electrical cables are inspected for damage.
- The specialist dealer will dismantle and clean the entire suspension fork interior and exterior. They will clean and lubricate the dust seals and slide bushings, check the torques and adjust the fork to the rider's preferred position. They will also replace the sliding collar if the clearance is too great (more than 1 mm on the fork bridge).
Maintenance

- The specialist dealer will fully inspect the interior and exterior of the rear frame damper, overhaul the rear frame damper, replace all air seals of air forks, overhaul the air suspension, change the oil and replace the dust wipers.

- The further servicing measures correspond to those which are recommended for a bicycle as per EN 4210. Particular attention is paid to the rim and brake wear. The spokes are re-tightened in accordance with the findings.
8.4 Adjusting and repairing

CAUTION

Crash and falling caused by unintentional activation

There is a risk of injury if the drive system is activated unintentionally.

► Remove the battery before the service.

8.4.1 Use original parts and lubricants only

The individual parts of the bicycle have been selected carefully and to matched to each other.

Only original parts and lubricants must be used for maintenance and repair.

The constantly updated lists of approved accessories and parts are available to specialist dealers.
8.4.2 Wheel quick release

Crash caused by unfastened quick release

A faulty or incorrectly installed quick release may become caught in the brake disc and block the wheel. This will cause a crash.

- Install the front wheel quick release lever on the opposite side to the brake disc.

Crash caused by faulty or incorrectly installed quick release

The brake disc becomes very hot during operation. Parts of the quick release may become damaged as a result. The quick release comes loose. This will result in a crash and injuries.

- The front wheel quick release lever and the brake disc must be situated on opposite sides.

Crash caused by incorrectly set clamping force

Excessively high clamping force will damage the quick release and cause it to lose its function.

Insufficient clamping force will cause a detrimental transmission of force. The suspension fork or the frame may break. This will result in a crash and injuries.

- Never fasten a quick release using a tool (e.g. hammer or pliers).

- Only use the clamping lever with the specified set clamping force.
8.4.2.1 Clamping the clamping lever

The clamping lever for the quick release is marked OPEN and CLOSE. If you can read the word OPEN, the quick release is open. If you can read the word CLOSE, the quick release is clamped.

▶ Align the clamping lever properly and push it through as far as it will go.

.GetFiles wheel clamping lever is clamped if the clamping lever can be moved easily from the open final position into the middle and has to be pressed with the fingers or base of the thumb from the middle point onwards.

8.4.2.2 Clamping version I

▶ Hold the open clamping lever. Screw the setting nut tight on the opposite side.

▶ Clamp the clamping lever.

▶ The final position of the clamping lever is at a right angle to the fork or frame.

Figure 71: Wheel quick release, version I, with clamping lever (2), fork (1) and setting nut (3)
Maintenance

Checking and setting the clamping force of the quick releases

If the clamping lever cannot be moved into the final position just by pushing it with the hand, or if it is too loose, its clamping force will need to be readjusted.

- The clamping lever is completely open.
- Turn the setting nut a little.
- Clamp the clamping lever.
- Repeat the steps until the proper angle has been achieved.

8.4.2.3 Clamping version II

![Diagram of quick release, version II, with clamping lever (1), axle (2), setting nut (3), and detailed view of the open (4) and closed (5) flange]

- The clamping lever is completely open.
- Push the axle into the hub as far as it will go.
- Align the clamping lever.
- Close the clamping lever
- The final position of the clamping lever is forward, parallel to the fork.
Maintenance

8.4.2.4 Clamping version III

NOTICE

If the clamping force is insufficient, have the specialist dealer inspect it.

Figure 73: Quick release, version III, with axle (1) and clamping lever (2)

- Push the axle into the hub as far as it will go with the clamping lever completely open.
- Screw the quick release on the open clamping lever clockwise into the hub as far as it will go.
- Screw it out one turn.
- Use the fingers to screw in the clamping lever in the semi-open position, roughly in the middle between OPEN and CLOSE, until you feel resistance.
- Clamp the clamping lever.
8.4.2.5 Clamping version IV

- Push the axle into the hub as far as it will go with the clamping lever open.
- Screw the clamping lever clockwise into the correct final position.
- Clamp the clamping lever.

Setting the clamping force

If the clamping force is set too high, the clamping lever cannot be pushed into the closed final position.

- Turn the twist knob:
 - Turn 1/8 turn anti-clockwise to reduce the clamping force.
 - Turn 1/8 turn clockwise to increase the clamping force.
- Clamp the clamping lever.
- If the clamping lever is not yet in the proper final position, repeat the steps until the proper final position has been achieved.

Figure 74: Wheel quick release, version IV, with twist knob (1) and clamping lever (2)
8.4.2.6 Clamping version V

Crash caused by unfastened quick release

The clamping force of the quick release lever is set once during assembly and is not an indication that the wheel axle is sufficiently fastened. The axle may come loose if the closed quick release is turned. This will result in a crash and injuries.

► Never adjust or turn a quick release after closing it, e.g. to correct the final position.

► Push the axle into the hub from the left until it meshes in the thread on the right-hand fork end.

Figure 75: Quick release, version V, with axle (1) and clamping lever (2)

► Flip the quick release lever into the recess.

Figure 76: Flipping the quick release into the recess (1)
Maintenance

- Turn the axle on the quick release clockwise until the axle is firmly in place.
- Pull the lever from the recess and clamp it properly.
- The clamping force of the lever is not an indication of the tightening torque of the axle.

Setting the clamping force

If the clamping lever cannot be moved into its proper final position by pushing it with the hand, or if it is too loose, its clamping force will need to be readjusted.

Figure 77: Setting the clamping force in the middle of the clamping lever (1) with a hexagon socket spanner (2)
Maintenance

- Open the quick release lever.
- Connect a 2.5 mm hexagon socket spanner to the middle of the clamping lever.
- Turn the hexagon socket spanner:
 - turn clockwise to increase the clamping force and
 - anti-clockwise to reduce the clamping force.
- Clamp the clamping lever.
- If the clamping lever is not yet in the proper final position, repeat the steps until the proper final position has been achieved.
8.4.3 Adjusting the tire pressure

8.4.3.1 Dunlop valve

The tire pressure cannot be measured on the simple Dunlop valve. The tire pressure is therefore measured in the filling hose when pumping slowly with the bicycle pump.

✓ It is recommendable to use a bicycle pump with a pressure gauge. The operating instructions for the bicycle pump must be adhered to.

► Unscrew and remove the valve cap.

► Connect the bicycle pump.

► Pump up the tire slowly and pay attention to the tire pressure in the process.

⊹ The tire pressure has been adjusted as per the data [Data sheet, page 1].

► If the tire pressure is too high, unfasten the union nut, let off air and tighten the union nut again.

► Remove the bicycle pump.

► Screw the valve cap tight.

✓ Screw the rim nut gently against the rim with the tips of your fingers.

Figure 78: Dunlop valve with union nut (1) and rim nut (2)
8.4.3.2 Presta valve

- It is recommendable to use a bicycle pump with a pressure gauge. The operating instructions for the bicycle pump must be adhered to.
 - Unscrew and remove the valve cap.
 - Open the knurled nut around four turns.
 - Carefully apply the bicycle pump so that the valve insert is not bent.
 - Pump up the tire slowly and pay attention to the tire pressure in the process.
 - The tire pressure has been adjusted as per the data [Data sheet, page 1].
 - Remove the bicycle pump.
 - Tighten the knurled nut with your fingers.
 - Screw the valve cap tight.
 - Screw the rim nut gently against the rim with the tips of your fingers.

Figure 79: Presta valve with valve insert (1), knurled nut (2) and rim nut (3)
8.4.3.3 Schrader valve

✓ It is recommendable to use a bicycle pump with a pressure gauge. The operating instructions for the bicycle pump must be adhered to.

► Unscrew and remove the valve cap.

► Connect the bicycle pump.

► Pump up the tire slowly and pay attention to the tire pressure in the process.

⇒ The tire pressure has been adjusted as per the data [Data sheet, page 1].

► Remove the bicycle pump.

► Screw the valve cap tight.

► Screw the rim nut gently against the rim with the tips of your fingers.

Figure 80: Schrader valve with rim nut (1)
8.4.4 Adjusting the gear shift

If you cannot select the gears effortlessly, you will need to adjust the setting for the shift cable tension.

► Carefully pull the adjusting sleeve away from the shifter housing, turning it as you do so.

► Check the gear shift function after each adjustment.

If you are unable to adjust the gear shift in this way, the specialist dealer will need to check the gear shift assembly.

8.4.4.1 Cable-operated gear shift, single-cable Alternative

► For a smooth gear shift, adjust the adjusting sleeves on the shifter housing.

Figure 81: Adjusting sleeve (1) for the single-cable cable-operated gear shift with shifter housing (2), example
8.4.4.2 Cable-operated gear shift, dual-cable

Alternative

▶ For a smooth gear shift, set the adjusting sleeves underneath the chain stay on the frame.

▶ The shift cable has around 1 mm play when it is pulled out gently.

Figure 82: Adjusting sleeves (2) on two alternative versions (A and B) of a dual-cable cable-operated gear shift on the chain stay (1)
8.4.4.3 Cable-operated twist grip, dual-cable

Alternative

► For a smooth gear shift, set the adjusting sleeves on the shifter housing.

✵ There is noticeable play of around 2–5 mm (1/2 gear) when twisting the twist grip.

Figure 83: Twist grip with adjusting sleeves (1) and play of the gear shift (2)
8.4.5 Offsetting the brake lining wear

8.4.5.1 Hydraulically operated rim brake

Alternative

The *setting bolt* on the *brake lever* of the hydraulic rim brake is used to offset the brake lining wear. If the profile of the brake linings has a remaining depth of just 1 mm, the brake linings need to be replaced.

- In order to reduce the free travel and offset the brake lining wear, screw the *setting bolt* in.
- In order to increase the free travel, screw the *setting bolt* out.

* With the optimum setting the pressure point, i.e. the point at which the brake takes effect, is reached after 10 mm of free travel.

![Brake lever (1) of the hydraulically operated rim brake with setting bolt (2)](image)

8.4.5.2 Hydraulically operated disc brake

Alternative

The brake pad wear on the disc brake does not require readjustment.
8.4.6 Replacing the lighting

Alternatively a 3 watt or 1.5 watt lighting system can be installed.

- Only use components of the respective power class for replacement.

8.4.7 Setting the headlight

- The headlight must be set, so that its light beam meets the road 10 m in front of the bicycle.

8.4.8 Repair by the specialist dealer

Special knowledge and tools are required for many repairs. Only a specialist dealer may carry out the following repairs, for instance:

- Replacing tyres and rims,
- Replacing brake pads and brake linings
- Replacing and tensioning the chain.
8.4.9 **Replacing the lighting**

Alternatively a 3 watt or 1.5 watt lighting system can be installed.

► Only use components of the respective power class for replacement.

8.4.10 **Setting the headlight**

► The *headlight* must be set, so that its light beam meets the road 10 m in front of the bicycle.

8.4.11 **Repair by the specialist dealer**

Special knowledge and tools are required for many repairs. Only a specialist dealer may carry out the following repairs, for instance:

- Replacing *tyres* and rims,
- Replacing brake pads and brake linings,
- Replacing and tensioning the *chain*.
8.4.12 First aid

Fire and explosion due to faulty batteries

The safety electronics on damaged or faulty batteries may fail. The residual voltage can cause a short circuit. The batteries may self-ignite and explode.

- Batteries with external damage must be removed from service immediately.
- Never allow damaged batteries to come into contact with water.
- If a battery is dropped or struck but shows no signs of external damage, remove the battery from service and observe it for at least 24 hours.
- Faulty batteries are hazardous goods. Dispose of faulty batteries properly and as quickly as possible.
- Store in a dry place until disposal. Never store in the vicinity of flammable substances.
- Never open or repair the battery.

The components of the drive system are checked constantly and automatically. If an error is detected, the respective error code appears on the display. The drive may be shut off automatically, depending on the type of error.
8.4.13 The electric drive system or display do not start up

If the display and/or the drive system do not start up, proceed as follows:

- Check whether the battery is switched on. If not, start the battery.
- Contact specialist dealer if the charge status indicator LEDs do not light up.
- If the LEDs of the charge status indicator light up, but the drive system does not start up, remove the battery.
- Insert the battery.
- Start the drive system.
- If the drive system does not start up, remove the battery.
- Clean all the contacts with a soft cloth.
- Insert the battery.
- Start the drive system.
- If the drive system does not start up, remove the battery.
- Fully charge the battery.
- Insert the battery.
- Start the drive system.
- If the drive system does not start up, remove the display.
- Fasten the display.
- Start the drive system.
- Contact your specialist dealer if the drive system does not start up.
Maintenance

8.4.13.1 System messages

If an error message is displayed, run through the following actions:

- Make a note of the system message.
- Shut off and re-start the drive system.
- If the system message is still displayed, remove and then re-insert the battery.
- Re-start the drive system.
- If the system message is still displayed, contact your specialist dealer.

8.4.13.2 Special system messages

- Make a note of the system message. You will find the complete system error list in the appendix.

<table>
<thead>
<tr>
<th>Code</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>410, 418</td>
<td>Check whether buttons are jammed because dirt has got into them, for example. Clean the buttons if necessary.</td>
</tr>
<tr>
<td>430</td>
<td>Recharge internal display battery.</td>
</tr>
<tr>
<td>502</td>
<td>Check the light and its cabling. Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>530, 591, 655</td>
<td>Turn off the drive system. Remove the battery. Insert the battery again. Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
</tbody>
</table>

Table 29: Error eradication using the code
Maintenance

<table>
<thead>
<tr>
<th>Code</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>540, 605</td>
<td>▶ The bicycle is outside the permitted temperature range.</td>
</tr>
<tr>
<td></td>
<td>▶ Switch the bicycle off to cool the drive unit down or warm it up to</td>
</tr>
<tr>
<td></td>
<td>the permitted temperature range.</td>
</tr>
<tr>
<td></td>
<td>▶ Re-start the system.</td>
</tr>
<tr>
<td></td>
<td>▶ Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>550</td>
<td>▶ Remove the electrical load.</td>
</tr>
<tr>
<td></td>
<td>▶ Re-start the system.</td>
</tr>
<tr>
<td></td>
<td>▶ Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>592</td>
<td>▶ Insert a compatible display.</td>
</tr>
<tr>
<td></td>
<td>▶ Re-start the system.</td>
</tr>
<tr>
<td></td>
<td>▶ Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>602</td>
<td>▶ Disconnect the charger from the battery.</td>
</tr>
<tr>
<td></td>
<td>▶ Re-start the system.</td>
</tr>
<tr>
<td></td>
<td>▶ Plug the charger into the battery.</td>
</tr>
<tr>
<td></td>
<td>▶ Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>605</td>
<td>▶ Disconnect the charger from the battery.</td>
</tr>
<tr>
<td></td>
<td>▶ Let the battery cool down.</td>
</tr>
<tr>
<td></td>
<td>▶ Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>620</td>
<td>▶ Replace the charger.</td>
</tr>
<tr>
<td></td>
<td>▶ Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>656</td>
<td>▶ Contact your specialist dealer to install a software update.</td>
</tr>
<tr>
<td>7xx</td>
<td>▶ Please observe the manufacturer's operating instructions.</td>
</tr>
<tr>
<td>No screen display</td>
<td>▶ Re-start your drive system by switching it on and off.</td>
</tr>
</tbody>
</table>

Table 29: Error eradication using the code

▶ If the system message is still displayed, contact your specialist dealer.
Maintenance

8.5 Accessories

For bicycles without a kickstand we recommend a parking stand into which either the front or rear wheel can be inserted securely. The following accessories are recommended:

<table>
<thead>
<tr>
<th>Description</th>
<th>Article number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protective cover for electrical components</td>
<td>080-41000 ff</td>
</tr>
<tr>
<td>Panniers, system component*</td>
<td>080-40946</td>
</tr>
<tr>
<td>Rear wheel basket, system component*</td>
<td>051-20603</td>
</tr>
<tr>
<td>Bicycle box, system component*</td>
<td>080-40947</td>
</tr>
<tr>
<td>Parking stand universal stand</td>
<td>XX-TWO14B</td>
</tr>
<tr>
<td>Lighting set, system component**</td>
<td>070-50500 ff</td>
</tr>
</tbody>
</table>

Table 30: Accessories

*System components are matched to the pannier rack and provide sufficient stability due to special transmission of force.

**System components are matched to the drive system.

8.5.1 Child seat

Crash caused by incorrect child seat

Neither the pannier rack nor the bicycle down tube are suitable for child seats and may break. Such an incorrect position may cause a crash with serious injuries for the rider and the child.

▶ Never attach a child seat to the saddle, handlebars or down tube.
Maintenance

Crash caused by improper handling

![CAUTION]

When using child seats, the riding properties and the stability of the bicycle change considerably. This can cause a loss of control, a crash and injuries.

- You should practice how to use the child seat safely and reliably before using the bicycle in public spaces.

Risk of crushing due to exposed springs

![CAUTION]

The child may crush his/her fingers on exposed springs or open mechanical parts of the saddle or the seat post.

- Never install saddles with exposed springs if a child seat is being used.

- Never install seat posts with suspension with open mechanical parts or exposed springs if a child seat is being used.

![NOTICE]

- Observe the legal regulations on the use of child seats.

- Observe the operating and safety notes for the child seat system.

- Never exceed the total weight of the bicycle.
8.5.2 Bicycle trailer

Crash caused by brake failure

The brake may not work sufficiently if there is an excessive trailer load. The long braking distance can cause a crash or an accident and injuries.

- Never exceed the specified trailer load.

The operating and safety notes for the trailer system must be observed.

The statutory regulations on the use of bicycle trailers must be observed.

- Only use type-approved coupling systems.

A bicycle which is approved for towing a trailer is equipped with the relevant information sign. Only bicycle trailers with a support load and total mass which do not exceed the permitted values must be used.
8.5.3 Pannier rack

The specialist dealer will advise on choosing a suitable pannier rack.

The specialist dealer must mount the pannier rack the first time to ensure that it is safely fitted.

When installing a pannier rack, the specialist dealer makes sure that the fastening mechanism for the rack is suitable for the bicycle and that all components are installed and firmly fastened. They will also ensure that shift cables, brake cables and hydraulic and electrical lines are adjusted as necessary, the rider's freedom of movement is not restricted and the permitted total weight of the bicycle is not exceeded.

The specialist dealer will provide instruction on how to handle the bicycle and the pannier rack.
Recycling and disposal

9 Recycling and disposal

Risk of fire and explosion

The safety electronics on damaged or faulty batteries may fail. The residual voltage can cause a short circuit. The batteries may self-ignite and explode.

- Remove batteries with external damage from service immediately and never charge them.
- If the battery becomes deformed or begins to smoke, keep at a safe distance, disconnect the power supply at the socket, and notify the fire service immediately.
- Never extinguish damaged batteries with water or allow them to come into contact with water.
- Faulty batteries are hazardous goods. Dispose of faulty batteries properly and as quickly as possible.
- Store in a dry place until disposal. Never store in the vicinity of flammable substances.
- Never open or repair the battery.

Chemical burns to the skin and eyes

Liquids and vapours may leak from damaged or faulty batteries. They can irritate the airways and cause burns.

- Avoid contact with leaked liquids.
- Immediately consult a doctor in case of contact with the eyes or any discomfort.
- In case of contact with the skin, rinse off immediately with water.
- Ventilate the room well.
This device is marked according to the European Directive 2012/19/EU on waste electrical and electronic equipment – WEEE. The directive provides the framework for the return and recycling of used devices across the EU.

The bicycle, battery, display and charger are recyclable materials. You must dispose of and recycle them separately from domestic waste in compliance with the applicable statutory regulations.

Separate collection and recycling saves reserves of raw materials and ensures that all the regulations for protection of health and the environment are adhered to when recycling the product and/or the battery.

- Never dismantle the bicycle, battery or charger for disposal.
- The bicycle, display, the unopened and undamaged battery and the charger can be returned to any specialist dealer free of charge. Depending on the region, further disposal options may be available.
- Store the individual parts of the decommissioned bicycle in a dry place, free from frost, where they are protected from direct sunlight.
Appendix

10 Appendix

10.1 System messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>One or more display buttons are blocked</td>
<td>Check whether buttons are jammed because dirt has got into them, for example. Clean the buttons if necessary.</td>
</tr>
<tr>
<td>414</td>
<td>Connection problem with the control panel</td>
<td>Have ports and connections checked.</td>
</tr>
<tr>
<td>418</td>
<td>One or more buttons on the control panel are blocked.</td>
<td>Check whether buttons are jammed because dirt has got into them, for example. Clean the buttons if necessary.</td>
</tr>
<tr>
<td>419</td>
<td>Configuration error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>422</td>
<td>Connection problem with the drive unit</td>
<td>Have ports and connections checked.</td>
</tr>
<tr>
<td>423</td>
<td>Battery connection problem</td>
<td>Have ports and connections checked.</td>
</tr>
<tr>
<td>424</td>
<td>Communication error with components communicating with one another</td>
<td>Have ports and connections checked.</td>
</tr>
<tr>
<td>426</td>
<td>Internal time-out error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists. It is not possible to display or adjust the tire size in the basic settings menu in this error status.</td>
</tr>
<tr>
<td>430</td>
<td>Internal display battery empty</td>
<td>Recharge internal display battery (in its bracket or using USB port).</td>
</tr>
<tr>
<td>431</td>
<td>Software version error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>440</td>
<td>Internal drive unit error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>450</td>
<td>Internal software error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
</tbody>
</table>

Table 31: List of system messages
Appendix

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 460 | Error in USB port | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 490 | Internal display error | ▶ Have display checked. |
| 500 | Internal drive unit error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 502 | Error in the bicycle lighting | ▶ Check the light and its cabling.
▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 503 | Speed sensor error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 510 | Internal sensor error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 511 | Internal drive unit error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 530 | Battery error | ▶ Turn off the drive system.
▶ Remove the battery.
▶ Insert the battery again.
▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 531 | Configuration error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 540 | Temperature error | ▶ The bicycle is outside the permitted temperature range.
▶ Switch the bicycle off to cool the drive unit down or warm it up to the permitted temperature range.
▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 550 | An inadmissible electrical load has been detected | ▶ Remove the electrical load.
▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |

Table 31: List of system messages
Table 31: List of system messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>580</td>
<td>Software version error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>591</td>
<td>Authentication error</td>
<td>Turn off the drive system. Remove the battery. Insert the battery again. Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>592</td>
<td>Incompatible component</td>
<td>Insert a compatible display. Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>593</td>
<td>Configuration error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>595, 596</td>
<td>Communication error</td>
<td>Check the cabling to the gears. Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>602</td>
<td>Internal battery error during the charging process</td>
<td>Disconnect the charger from the battery. Re-start the system. Plug the charger into the battery. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>602</td>
<td>Internal battery error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>603</td>
<td>Internal battery error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>605</td>
<td>Battery temperature error</td>
<td>The bicycle is outside the permitted temperature range. Switch the system off to cool the drive unit down or warm it up to the permitted temperature range. Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>605</td>
<td>Battery temperature error during the charging process</td>
<td>Disconnect the charger from the battery. Let the battery cool down. Contact your specialist dealer if the problem persists.</td>
</tr>
</tbody>
</table>
Appendix

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| 606 | External battery error | ▶ Check the cabling.
▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 610 | Battery voltage error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 620 | Charger error | ▶ Replace the charger.
▶ Contact your specialist dealer if the problem persists. |
| 640 | Internal battery error | ▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 655 | Multiple battery error | ▶ Turn off the system.
▶ Remove the battery.
▶ Insert the battery again.
▶ Re-start the system.
▶ Contact your specialist dealer if the problem persists. |
| 656 | Software version error | ▶ Contact your specialist dealer to install a software update. |
| 7xx | Gear error | ▶ Please observe the manufacturer's operating instructions. |
| 800 | Internal ABS error | ▶ Contact your specialist dealer. |
| 810 | Implausible signals from the wheel speed sensor. | ▶ Contact your specialist dealer. |
| 820 | Error in the line to the front wheel speed sensor. | ▶ Contact your specialist dealer. |
| 821 ... 826 | Implausible signals from the front wheel speed sensor.
Sensor disc possibly missing, defective or incorrectly installed; significantly different tire diameter between the front wheel and rear wheel; extreme riding situation, such as riding on the rear wheel only | ▶ Re-start the system.
▶ Take a test ride of at least two minutes. The ABS indicator lamp must go out.
▶ Contact your specialist dealer if the problem persists. |
| 830 | Error in the line to the rear wheel speed sensor. | ▶ Contact your specialist dealer. |
| 831 833 ... 835 | Implausible signals from the rear wheel speed sensor.
Sensor disc possibly missing, defective or incorrectly installed; significantly different tire diameter between the front wheel and rear wheel; extreme riding situation, such as riding on the rear wheel only | ▶ Re-start the system.
▶ Take a test ride of at least two minutes. The ABS indicator lamp must go out.
▶ Contact your specialist dealer if the problem persists. |

Table 31: List of system messages
Appendix

<table>
<thead>
<tr>
<th>Code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>840</td>
<td>Internal ABS error</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>Internal ABS error</td>
<td>Contact your specialist dealer.</td>
</tr>
<tr>
<td>860, 861</td>
<td>Error in the power supply</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>870, 871, 880, 883 ... 885</td>
<td>Communication error</td>
<td>Re-start the system. Contact your specialist dealer if the problem persists.</td>
</tr>
<tr>
<td>889</td>
<td>Internal ABS error</td>
<td>Contact your specialist dealer.</td>
</tr>
<tr>
<td>890</td>
<td>ABS indicator lamp is defective or missing; ABS possibly not functioning.</td>
<td>Contact your specialist dealer.</td>
</tr>
<tr>
<td>No screen display</td>
<td>Internal display error</td>
<td>Re-start your drive system by switching it on and off.</td>
</tr>
</tbody>
</table>

Table 31: List of system messages
10.3 BOSCH EC Declaration of Conformity

Robert Bosch GmbH, Bosch eBike Systems, hereby declares that the Kiox radio system complies with Directive 2014/53/EU. The complete EU declaration of conformity is available online at: https://www.ebike-connect.com/conformity.
10.4 Parts list

<table>
<thead>
<tr>
<th>Model</th>
<th>Six50 Evo AM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>BOSCH Performance CX</td>
</tr>
<tr>
<td>Display</td>
<td>KIOX</td>
</tr>
<tr>
<td>Battery</td>
<td>BOSCH 500 Wh, Integral</td>
</tr>
<tr>
<td>Charger</td>
<td>4 W</td>
</tr>
<tr>
<td>Brakes</td>
<td>Magura MT-7</td>
</tr>
<tr>
<td>Rear derailleur</td>
<td>Sram XX1</td>
</tr>
<tr>
<td>Cassette</td>
<td>NX, CS-PG-1230-A1 (11-50T)</td>
</tr>
<tr>
<td>Fork</td>
<td>Factory 36 Float Air Boost</td>
</tr>
<tr>
<td>Damper Lowerable</td>
<td>Fox Factory Float</td>
</tr>
<tr>
<td>seat post tire</td>
<td>Kind Shock Lev SI</td>
</tr>
<tr>
<td>Rims</td>
<td>Magic Mary, 65-584 SnakeSkin TLE</td>
</tr>
<tr>
<td>Saddle</td>
<td>DT SWISS, H-1700 Spline 35</td>
</tr>
<tr>
<td>Stem</td>
<td>FIZIK, GOBI M7 VS M</td>
</tr>
<tr>
<td>Headset</td>
<td>Kalloy, AS-ML1</td>
</tr>
<tr>
<td>Handles</td>
<td>FSA, Orbit</td>
</tr>
<tr>
<td>Pedals</td>
<td>ERGON, GD1</td>
</tr>
<tr>
<td></td>
<td>WELLGO, ZZE-01M</td>
</tr>
</tbody>
</table>

Table 32: Parts list for Six50 Evo AM4
Appendix
Table of figures

10.5 Table of figures

Figure 1: Type plate, example, 18
Figure 2: Bicycle viewed from the right, Six50 Evo 4 used as example, 26
Figure 3: Components of the wheel – example showing front wheel, 27
Figure 4: Bicycle without suspension (1) and with suspension (2) when riding over an obstacle, 29
Figure 5: Example showing Suntour fork, 30
Figure 6: Example showing Yari fork, 31
Figure 7: Example showing FOX rear frame damper, 32
Figure 8: Example showing Suntour rear frame damper, 33
Figure 9: Rim brake components with details; Magura HS22 used as an example, 34
Figure 10: Rim brake locking lever, closed (1) and open (2), 35
Figure 11: Diagram of mechanical drive system, 36
Figure 12: Diagram of electric drive system, 37
Figure 13: Details of integrated battery, 39
Figure 14: Overview of the control panel, 40
Figure 15: Overview of the structure and operating elements of the display, 42
Figure 16: Overview of start screen, 43
Figure 17: Fastening the transport securing device, 53
Figure 18: Fully inserting the axle, 62
Figure 19: Tightening the axle, 62
Figure 20: Pushing the quick release lever into the axle, 63
Figure 21: Tightening the securing screw, 63
Figure 22: Tightening the inserted axle, 64
Figure 23: Tightening the axle, 64
Figure 24: Pushing the axle into the hub, 66
Figure 25: Tightening the axle, 66
Figure 26: Pushing the quick release lever into the axle, 67
Figure 27: Securing the lever, 67
Figure 28: Perfect position for the clamping lever, 68
Figure 29: Adjusting the quick release clamping force, 68
Figure 30: Open and closed flange, 70
Figure 31: Pushing the quick release in, 70
Figure 32: Adjusting the clamping, 71
Figure 33: Closing the quick release, 71
Figure 34: Pushing the quick release in, 72
Table of figures

Figure 35: Spacing between lever and fork leg, 73
Figure 36: Structure of quick release from rear with (1) axle nut lock, (2) axle nut securing screw, (3) directional arrow, (4) axle setting value and (5) axle nut, 73
Figure 37: Pushing the Kabolt axle in, 75
Figure 38: Horizontal saddle tilt, 79
Figure 39: Optimal saddle height, 80
Figure 40: Seat post quick release (3) with clamping lever (5) and setting bolt (4) in the open position (1) and in the direction of the closed position (2), 80
Figure 41: Detailed view of the seat post – examples of the minimum insertion depth marking, 81
Figure 42: The seat post activation lever can be mounted either on the left (1) or the right (2) side of the handlebars, 82
Figure 43: Knee cap perpendicular line, 83
Figure 44: Open (2) and closed (1) clamping lever on the stem; by.schulz speedlifter used as an example, 85
Figure 45: Pulling locking lever upwards; by.schulz speedlifter used as an example, 86
Figure 46: Using the twist knob (1) to adjust the pressure point, 88
Figure 47: Brake lever grip distance, 89
Figure 48: Using the setting screw (2) to adjust the distance from the brake lever to the handlebar grip (1), 89
Figure 49: Screw caps in different designs, 91
Figure 50: Negative deflection setting wheel on the suspension fork crown, 93
Figure 51: Suntour rebound adjuster (2) on the fork (1), 94
Figure 52: FOX rebound adjuster (1) on the fork, 98
Figure 53: Suntour rebound adjuster wheel (1) on the rear frame damper, 100
Figure 54: Suntour compression adjuster wheel (1) on the rear frame damper, 101
Figure 55: FOX rear frame damper: The negative deflection (2) is the distance between the O-ring (4) and the rubber air chamber seal (1). The total deflection of the rear frame damper (5) is the distance between the end of the rear frame damper (3) and the rubber air chamber seal (1), 103
Figure 56: FOX rebound adjuster (1) on the rear frame damper, 104
Figure 57: Removing and inserting the down tube battery, 116
Figure 58: Removing the integrated battery, 117
Table of figures

Figure 59: Inserting the integrated battery, 118
Figure 60: Pull the display (2) out of its mount (1) away from the contacts with the display blocking screw (3), 129
Figure 61: Overview of the control panel, 134
Figure 62: Down shifter (1) and up shifter (2) on the left (I) and right (II) shift, 137
Figure 63: Front (2) and rear (1) brake lever; Shimano brake used as an example, 142
Figure 64: Suntour compression adjuster with the OPEN (1) and LOCK (2) positions, 143
Figure 65: FOX compression adjuster with the OPEN (1) and HARD (2) positions, 144
Figure 66: Suntour compression adjuster open (1), 145
Figure 67: Suntour compression adjuster closed (2), 145
Figure 68: FOX compression adjuster on the rear frame damper with the OPEN (1), MEDIUM (2) and HARD (3) positions, 146
Figure 69: Fine adjustment of the OPEN position is made using the adjuster (4), 146
Figure 70: Checking the chain and belt tension, 161
Figure 71: Wheel quick release, version I, with clamping lever (2), fork (1) and setting nut (3), 166
Figure 72: Quick release, version II, with clamping lever (1), axle (2), setting nut (3), and detailed view of the open (4) and closed (5) flange, 167
Figure 73: Quick release, version III, with axle (1) and clamping lever (2), 168
Figure 74: Wheel quick release, version IV, with twist knob (1) and clamping lever (2), 169
Figure 75: Quick release, version V, with axle (1) and clamping lever (2), 170
Figure 76: Flipping the quick release into the recess (1), 170
Figure 77: Setting the clamping force in the middle of the clamping lever (1) with a hexagon socket spanner (2), 171
Figure 78: Dunlop valve with union nut (1) and rim nut (2), 173
Figure 79: Presta valve with valve insert (1), knurled nut (2) and rim nut (3), 174
Figure 80: Schrader valve with rim nut (1), 175
Figure 81: Adjusting sleeve (1) for the single-cable cable-operated gear shift with shifter housing (2), example, 176
Figure 82:	Adjusting sleeves (2) on two alternative versions (A and B) of a dual-cable cable-operated gear shift on the chain stay (1), 177
Figure 83:	Twist grip with adjusting sleeves (1) and play of the gear shift (2), 178
Figure 84:	Brake lever (1) of the hydraulically operated rim brake with setting bolt (2), 179
Figure 85:	Trailer sign, 189
10.6 Index

A
- Air valve, Fork, 31
- Alternative, 17

B
- Battery, 39
 - charging, 119, 121
 - checking, 60
 - disposing of, 191
 - removing, 115, 117
 - waking, 123
- Belt tension, 160
- Bike stand, see Kickstand
- Brake arm, 34
- Brake lever,
 - adjusting the pressure point, 87
- Brake lining, 34
 - maintaining, 159
- Brake,
 - using the transport securing system, 53
- Break in operation, 54
 - carrying out, 55
 - preparing, 55
- Button, Driving light, 42
 - Minus, 40, 134
- On-Off (battery), 39
- On-Off (display), 42
 - Plus, 40, 134
- Push assist, 40, 134

C
- Chain drive, 36
- Chain guard,
 - checking, 109
- Chain tension, 160
- Chain wheel, 36
- Chain, 26, 36
 - maintaining, 160
 - replacing, 180, 181
- Charge status indicator, 39
- Charger, disposing of, 191

D
- Data sheet, 1
- Direction of travel, 36
- Display, 40
 - attaching, 130
 - charging the battery, 126, 129, 130
 - removing, 129
- Down tube battery, removing, 115, 117
- Drive system, 36
 - switching off, 125
 - switching on, 124
- Driving light button, 42
- Driving light, 39
 - checking function, 109
 - replacing, 180, 181

E
- EC declaration of conformity, 197

F
- Fork lock,
 - Position, 31
- Fork, 27
 - Fork end, structure, 30
- Frame number, 1
- Frame, 26
- Front wheel brake, 34
 - braking, 142
- Front wheel, see Wheel

G
- Gear shift twist grip,
 - checking, 159
- Gear shift,
 - maintaining, 159
 - switching, 137

H
- Handlebars, 26
- Headlight, 26, 37
- Hub, 27

I
- Initial commissioning, 58

J
- Journey information,
 - Clock, 47
 - Maximum, 47

L
- Level of assistance, 40, 46
 - selecting, 133
 - ECO, 46
 - OFF, 46
 - SPORT, 46
 - TOUR, 46
 - TURBO, 46
- Lighting, see Driving light

M
- Mass, see Weight
- Minimum insertion depth marking, 81
- Minus button, 40, 134
- Model year, 18
- Model, 1
- Motor, 37
- Mudguards, 26
 - checking, 109

O
- On-Off button,
 - Battery, 39
 - Display, 42
- On-screen indicator, 43, 189
- Operating status indicator, 39
- O-ring, 32

P
- Packaging, 57
- Pannier rack, 26
 - changing, 112
 - checking, 109
 - using, 111
- Parts list, 197
- Pedal, 36
- Plus button, 40, 134
- Push assist button, 40, 134
- Push assist,
 - using, 132
Index

Q
Quick release,
Position, 31

R
Rear frame damper,
structure, 32, 33
Rear light, 26, 37
Rear wheel, see Wheel
Rebound damper adjuster,
Position, 31
Reflector, 26
Retainer guard, 39
Rim brake locking lever 35
Rim, 27
- checking, 158
- replacing, 180, 181

S
Saddle, 26
- changing the saddle tilt, 78
- changing the seat length, 83
- determining the saddle height, 79, 83
Seat post, 26
- clamping, 87, 88, 93, 97
Securing hook, 39
Setting wheel, 32
Shifter,
- checking, 159
- setting, 162, 175, 176, 179
Spoke, 27
Storage, 53
Storing, see Storage
Suspension fork head, 27
Suspension fork, 28, 29
System setting,
changeable, 61

T
Transportation, 51
Transporting, see
Transportation Type number, 1, 18 Tire pressure, 1 Tire size, 1

Tyres, 27
- checking, 158
- replacing, 180, 181

U
USB port,
- using, 130

V
Valve cap, 31
Valve, 27
- Dunlop valve, 27
- Presta valve, 27
- Schrader valve, 27

W
Weight,
permitted total weight, 18
Unladen weight, 1
Wheel circumference, 1
Wheel,
- maintaining, 158
Winter break, see break in operation
Working environment, 56